A. General information:

Program: Science
Course Number: 202-DCP-05
Ponderation: 3-2-3
Credits: 2 2/3
Competency code: 00XV, 00UU
Prerequisite: 202-NYB-05 & 202-NYA-05
Semester: Fall 2015
Instructor:
Office:
Telephone:
E-mail:
Lab (3 hours):
Lecture:
Classroom:
Laboratory room:

B. Introduction: Organic Chemistry I is a science option course. As such, it is specifically intended to meet all the requirements of objective 00XV and to meet in part those of objective 00UU. The skills and knowledge acquired are at the university level and students passing this course are often given an exemption from the one-semester university organic chemistry I course.

In the last unit of General Chemistry 202-NYA [atomic and molecular structure], the student is introduced to a few basic organic chemistry, such as drawing organic structures, hybridization, isomerism and acid-base theory. This course will go much deeper into all these areas and will emphasize the three-key building blocks of organic chemistry: i) organic nomenclature; ii) the mechanism [arrow-pushing] of many important reactions in organic chemistry; iii) stereochemistry, particularly as applied to the stereochemical consequences and restrictions of a series of addition, elimination and substitution reactions.

The laboratory segment of the course will introduce the student to many of the standard techniques [synthesis, isolation, characterization] used in organic chemistry. This course lays the foundation for understanding and appreciating much of biochemistry, particularly much of the material covered in Biology II. The student will see that biochemical compounds are simply organic chemicals that happen to occur in living systems.
Comprehensive Assessment and Integration in the Science Program

The Ministry of Education requires every student to pass a program comprehensive assessment and a program integrating activity (Exit Profile Competency 14: “to apply what has been learned to new situations” and Ministry objective 00UU: “to apply acquired knowledge to one or more subjects in the sciences”). The Ministry introduced these requirements because it recognized the importance of connecting the various components within each program.

The various competencies to be addressed in the Science Program are outlined in the outcomes and standards of the Science Program Exit Profile and are listed below. They are divided into two groups: those competencies that are taught and assessed in virtually every course in the program, and those that will be the primary focus of the option courses.

The following competencies are taught and assessed in most courses of the program:

3. To apply the scientific method.
4. To apply a systematic approach to problem solving.
5. To use appropriate data processing techniques.
6. To reason with rigour, i.e. with precision.
8. To learn in an autonomous manner.
13. To display attitudes and behaviour compatible with the scientific spirit and method.
14. To apply what has been learned to new situations.

The following competencies will be the special focus of the option courses of the program:

7. To communicate effectively.
9. To work as a member of a team.
10. To recognize the links between science, technology and the evolution of society.
11. To develop a personal system of values.
12. To put into context the emergence and development of scientific concepts.

Rather than impose a major exam or paper at the end of the Science Program, or requiring a single course to fulfill these requirements, John Abbott College has integrated the fulfillment of these requirements into the option courses taken late in the program. These courses have been designed so that by passing any three option courses a student will have met the above requirements of the program.

Note: By passing the comprehensive assessment in 202-DCP-Organic 1, the student will be fulfilling half of the requirements set by the program.
C. OBJECTIVES

Statement of the Competency

To solve simple problems in organic chemistry (00XV).

Elements of the Competency

1. To apply the rules of nomenclature to simple organic compounds.
2. To represent the three-dimensional structure of organic compounds using their two-dimensional structural formula.
3. To distinguish the different types of isomerism: structural, geometric (cis-trans, E/Z) and optical (molecules containing an asymmetric carbon atom, chirality, enantiomers, R/S).
4. To recognize the different types of reagents: electrophiles, nucleophiles, free radicals, Lewis acids and bases.
5. To determine the reactivity of simple organic functional groups (alkanes, alkenes, alkynes, organomagnesiums, halogenated compounds, alcohols) using the main types of reaction mechanisms (S_N_1, S_N_2, E_1, E_2).
6. To theoretically conceive methods for synthesizing simple organic compounds on the basis of given products.
7. To describe the main functional groups that are useful in biology and biochemistry: amines, carboxylic acids and their derivatives, lipids, amino acids, proteins, carbohydrates.
8. To prepare, separate and identify simple organic compounds.

To apply acquired knowledge to one or more subjects in the sciences (00UU).

Elements of the Competency

1. To apply the experimental method.
2. To reason logically.
3. To communicate effectively.
4. To show evidence of independent learning in the choice of documentation or laboratory instruments.
5. To work as members of team.

General Performance Criteria:

- Use of the systematic and traditional nomenclature of organic compounds
- Precision of the three-dimensional representation of organic molecules
- Explanation of the influence of the main electronic effects on the principal types of reaction mechanisms
- Analysis of addition, elimination and substitution reactions
- Justification of the mechanism proposed to explain a simple, newly encountered reaction
- Ability to organize logically the principal reactions of the simple functional groups
- Adherence to safety and environmental protection regulations
- Capacity to establish connections between an experimental procedure and chemical theory
- Quality of experimental design and practice
- Quality of the laboratory report: presentation using a word processor, working hypotheses, coherence of the presentation, analysis and discussion of results, clarity and quality of language, bibliography
- Use of an interdisciplinary approach
- Application of acquired knowledge to new situations (00UV)

Specific Performance Criteria:

Specific performance criteria for each of the elements of the competency are shown below, with the corresponding Intermediate Learning Objectives. For the items in the list of learning objectives, it is understood that each is preceded by:

‘The student is expected to be able to….’
D. Evaluation Plan:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Ponderation</th>
<th>Elements of the Competency (cf. p. 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit test 1 (5th week)</td>
<td>10%</td>
<td>(00XV)1, 2, 3</td>
</tr>
<tr>
<td>Unit test 2 (10th week)</td>
<td>10%</td>
<td>(00XV)4, 5</td>
</tr>
<tr>
<td>Unit test 3 (15th week)</td>
<td>10%</td>
<td>(00XV)6, 7</td>
</tr>
<tr>
<td>Final exam (TBA)</td>
<td>30%</td>
<td>(00XV)1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20%</td>
<td>(00XV)8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(00UU)1, 2</td>
</tr>
<tr>
<td>Comprehensive assessment /</td>
<td>10%</td>
<td>(00UU)1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>laboratory Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quizzes and assignments</td>
<td>10%</td>
<td>(00XV)1, 2, 3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

6% for quizzes + 4% assignments

*Base ponderation. cf. following paragraphs for exceptions. The ponderation of individual laboratory experiments, quizzes and assignments are at the discretion of each teacher. Your teacher is responsible for letting you know ahead of time how much each one will be worth.
E. Course Content

<table>
<thead>
<tr>
<th>Specific Performance Criteria</th>
<th>Intermediate Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3-D Structures</td>
<td>1.1. For simple compounds, predict whether the bonds are mainly ionic or covalent.</td>
</tr>
<tr>
<td>1.1 Representation of the three-dimensional structure of organic compounds</td>
<td>1.1.2. Rationalize the 109.5° bond angle in methane by invoking sp³ hybridization.</td>
</tr>
<tr>
<td>2. Acid/Base Strength</td>
<td>1.1.3. Show the orbital box diagram for the C of methane before and after hybridization.</td>
</tr>
<tr>
<td>2.1. Prediction of the relative strengths of common organic acids and bases</td>
<td>1.1.4. Show an orbital overlap diagram for the bonding in methane and ethane.</td>
</tr>
<tr>
<td>2.1.1. Understand the relationship between the acidity of an acid and the relative stability of that acid and its conjugate base.</td>
<td>1.1.5. Represent this three-dimensional structure of the sp³ carbon with a 'line' diagram.</td>
</tr>
<tr>
<td>2.1.2. Rationalize the relative acid strengths of a carboxylic acid, phenol, alcohol, H on a carbon α to a C=O, and H on a C=C. Analysis of conjugate base stability (introduce concept of resonance)</td>
<td>1.1.6. Depict Lewis Structures, condensed formula, Kekule structures and bond-line structure</td>
</tr>
<tr>
<td>2.1.3. Rationalize substituent effects on pKₐ values.</td>
<td>2.1.4. Based on the pKₐ values of the various acids mentioned in 2.1.2., predict whether, in a particular acid-base reaction, the proton will be essentially totally removed [by examining the pKₐ's of the acids on the two sides of the equation].</td>
</tr>
<tr>
<td>2.1.5. Define a Lewis base and explain why amine bases are much stronger than oxygen bases.</td>
<td>2.1.6. Show how acid-base properties can be used to separate some mixtures.</td>
</tr>
<tr>
<td>3. Nomenclature, Isomerism and Stereochemistry</td>
<td>3.1.1. Nomenclature of various organic molecules containing common functional groups. Both systematic and common names</td>
</tr>
<tr>
<td>3.1 Nomenclature of alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, carboxylic acids, ketones, esters, aldehydes, etc.</td>
<td>3.2.1. Represent butane and isobutane with both a structural formula and a stick diagram.</td>
</tr>
<tr>
<td>3.2. Drawing of the various structural [constitutional] isomers, given a molecular formula</td>
<td>3.2.2. Draw structural formula and stick diagrams of the five C₆H₁₄ structural isomers; use models to see the differences.</td>
</tr>
<tr>
<td>3.2.3. Draw wedge, Fisher and Newman projections of various alkanes</td>
<td>3.2.3. Draw wedge, Fisher and Newman projections of various alkanes</td>
</tr>
<tr>
<td>3.2.4. Represent the ethylene structure with both a structural formula and stick diagram, clearly indicating the 120° bond angle and the coplanarity of the six atoms.</td>
<td>3.3.1. Rationalize the 120° bond angle in ethylene by invoking sp² hybridization.</td>
</tr>
<tr>
<td>3.3. Use models to confirm that cis and trans-2-pentene are different compounds.</td>
<td>3.3.2. Show the orbital box diagram for the carbons in ethylene before and after hybridization.</td>
</tr>
<tr>
<td>3.3.6. Use models to show that geometric isomerism can also occur in rings.</td>
<td>3.3.3. Show an orbital overlap diagram for the bonding in ethylene.</td>
</tr>
<tr>
<td>3.3.7. Rationalize the 180° bond angle in acetylene by invoking sp hybridization.</td>
<td>3.3.4. Represent the ethylene structure with both a structural formula and stick diagram, clearly indicating the 120° bond angle and the coplanarity of the six atoms.</td>
</tr>
</tbody>
</table>
Specific Performance Criteria

3.4 Stereoisomers with E/Z and/or R/S configuration

Intermediate Learning Objectives

3.4.1. Differentiate chiral and achiral compounds on the basis of superimposability of mirror images and the presence of a mirror plane in achiral compounds.

3.4.2. Flow chart analysis in order to differentiate between constitutional isomers, enantiomers and disatereomers.

3.4.3. Using models, verify that CHBrClF is chiral and use a 3-D diagram at the stereogenic carbon to represent the enantiomers.

3.4.4. For enantiomers, recognize the equivalency of the physical properties, except for optical rotation, and chemical reactions with achiral species.

3.4.5. For enantiomers, recognize the possibility of different biochemical reactions and relate this to enzyme action.

3.4.6. Stereoisomerism of cyclic compounds. Focus on di-substituted cyclohexanes.

3.4.7. Understand what a racemate is, why it is often produced in a chemical reaction, and its lack of an optical rotation.

3.4.8. Given an organic compound, be able to identify if it is optically active and, if so, show a 3-D representation of the enantiomers.

3.4.9. Represent a 3-D structural diagram as a Fisher projection, and vice versa.

3.4.10. Assign the absolute configuration [R/S] to a stereogenic carbon.

3.4.11. Assign the E/Z stereochemistry to geometric isomers of alkenes.

3.4.12. Represent, with Fischer projections, enantiomers and diastereomers in a compound with at least two stereogenic carbons.

3.4.13. Determine the number of stereoisomers \(2^n\) and be able to draw all the stereoisomers of compounds containing multiple stereogenic carbons and some with E/Z pi bonds also.

3.4.14. Recognize the two conditions for a meso compound; understand that it is achiral and optically inactive.

3.4.15. Given a pair of compounds, determine whether they are identical, structural isomers or stereoisomers [and if they represent enantiomers or diastereomers]

3.4.16. Draw a chair conformation of cyclohexane and identify the equatorial and axial positions.

3.4.17. Show the most stable chair conformation of a substituted cyclohexane.
<table>
<thead>
<tr>
<th>Specific Performance Criteria</th>
<th>Intermediate Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Reactivity and Mechanism</td>
<td>4.1. Recognize the different types of reagents: electrophiles, nucleophiles, radical elements, Lewis acids and bases.</td>
</tr>
<tr>
<td>4.1 Study of the mechanisms and products of a number of key organic reactions</td>
<td>4.1.2. Acquire a working knowledge of "arrow-pushing" to illustrate the mechanisms of common reactions.</td>
</tr>
<tr>
<td>4.2 Substitution Reactions</td>
<td>4.1.3. Write mechanisms for a wide variety of important chemical reactions. The reactions studied include some or all of the following: the synthesis of alkenes via dehydration of alcohols and dehydrohalogenation of alkyl halides; the bromination of alkynes and their synthesis via a double dehydrohalogenation; esterification reactions; the bromination of an alcohol with HBr; the acid-base reaction of carboxylic acids; the Williamson synthesis of ethers; the hydrolysis of an ester in basic media; The addition, of HX, X₂, X₂/H₂O, X₂/ROH to alkenes/alkynes.</td>
</tr>
<tr>
<td>4.2.1. Show the energy level diagram for an S_N1 and S_N2 reaction.</td>
<td>4.2.2. Show the Walden inversion in an S_N2 reaction at a stereogenic carbon.</td>
</tr>
<tr>
<td>4.2.2. Show the Walden inversion in an S_N2 reaction at a stereogenic carbon.</td>
<td>4.2.3. Rationalize the relative reactivity via S_N2 of 1°, 2° and 3° alkyl halides.</td>
</tr>
<tr>
<td>4.2.3. Rationalize the relative reactivity via S_N2 of 1°, 2° and 3° alkyl halides.</td>
<td>4.2.4. Show the mechanism of an S_N1 reaction at a stereogenic carbon and the effect on optical rotation, and contrast with an S_N2 reaction.</td>
</tr>
<tr>
<td>4.2.4. Show the mechanism of an S_N1 reaction at a stereogenic carbon and the effect on optical rotation, and contrast with an S_N2 reaction.</td>
<td>4.2.5. Rationalize the relative reactivity via S_N1 of 1°, 2° and 3° alkyl halides.</td>
</tr>
<tr>
<td>4.2.5. Rationalize the relative reactivity via S_N1 of 1°, 2° and 3° alkyl halides.</td>
<td>4.2.6. Determine whether a reaction will occur via S_N1 or S_N2 by examining the nature of the alkyl halide, of the nucleophile and of the solvent.</td>
</tr>
<tr>
<td>4.2.6. Determine whether a reaction will occur via S_N1 or S_N2 by examining the nature of the alkyl halide, of the nucleophile and of the solvent.</td>
<td>4.2.7. Show the mechanism and product of the S_N2 reaction i) between hydroxide ion and an alkyl bromide; ii) in the Williamson ether synthesis; iii) between sodium cyanide and an alkyl halide [and then the mechanism of the acid-catalyzed hydrolysis of the nitrile]; iv) between an acetylide ion and an alkyl halide; v) between ammonia and an alkyl halide; vi) in the acid-catalyzed reaction of an epoxide with water; vii) between an alcohol and HBr.</td>
</tr>
<tr>
<td>4.2.7. Show the mechanism and product of the S_N2 reaction i) between hydroxide ion and an alkyl bromide; ii) in the Williamson ether synthesis; iii) between sodium cyanide and an alkyl halide [and then the mechanism of the acid-catalyzed hydrolysis of the nitrile]; iv) between an acetylide ion and an alkyl halide; v) between ammonia and an alkyl halide; vi) in the acid-catalyzed reaction of an epoxide with water; vii) between an alcohol and HBr.</td>
<td>4.2.8. Effects of leaving groups, nucleophiles, structure of alkyl halide and solvent effect on reaction rates. (Kinetics)</td>
</tr>
<tr>
<td>4.2.8. Effects of leaving groups, nucleophiles, structure of alkyl halide and solvent effect on reaction rates. (Kinetics)</td>
<td>4.2.1. Show and contrast the mechanisms of the E1 and E2 reaction.</td>
</tr>
<tr>
<td>4.2.1. Show and contrast the mechanisms of the E1 and E2 reaction.</td>
<td>4.2.2. Show the mechanism of the acid-catalyzed dehydration of a 3° alcohol. Using sawhorse diagrams, show the stereochemistry of the E2 elimination of hydrogen halide from an alkyl halide.</td>
</tr>
</tbody>
</table>
Specific Performance Criteria

(4.2 Con’t)

4.3 Addition reactions

5. Synthesis

5.1 Proposal of a synthesis of simple organic compounds

6. Aromatic Compounds

6.1 Understand the fundamental characteristics and chemistry of arenes. Reactions, mechanisms and synthesis

Intermediate Learning Objectives

4.2.3 Apply Zaitsev’s rule to the direction of elimination in an E2 elimination on an alkyl halide, and in a dehydrogenation of an alcohol.

4.2.4 Show the reagents and mechanism for a Hofmann elimination.

4.3.1. Show the mechanism and stereochromical consequence of the addition of a halogen to an alkene.

4.3.2. Apply Markovnikov’s rule and show the mechanism of addition of acids to an alkene.

4.3.3. Show the mechanism of the acid-catalyzed addition of water/alcohol to an alkene.

4.3.4. Show the platinum or palladium catalyzed addition of hydrogen to an alkene.

4.3.5. Show the mechanism for anti-Markovnikov addition of HBr to an alkene in the presence of peroxide.

4.3.6. Show the mechanism for the stereospecific addition of bromine to an alkene. Compare the addition of bromine to a cis-alkene vs a trans-alkene.

4.3.7. Oxymercuration/demercuration, hydroboration/oxidation of alkenes/alkynes

5.1.1. Given the starting material and the product, using the reactions outlined to propose a reasonable synthesis Introduction to retrosynthetic analysis. Synthesis of alkenes, alkynes, alcohols, alkyl halides, etc

6.1.1. Describe the bonding in benzene using either M.O or V.B Theory

6.1.2. Understand the criteria (including Huckel’s rule) and chemical consequences of aromaticity and antiaromaticity.

6.1.3. Explain the common characteristics of aromatic compounds; stability, diamagnetic anisotropy and similar chemical reactions

6.1.4. Nomenclature of substituted aromatic rings (use of o,m,p and numbering system) and certain heterocyclic compounds

6.1.5. Name common polynuclear aromatics; naphthalene, anthracene, phenanthracene.

6.1.6. Heterocyclic aromatic compounds; furan, thiophene, aniline, pyrrole, indole, etc
Please refer to teacher’s appendix with tentative timetable.
F. Required Text and Material:
2. A molecular model kit (~ $28).
3. Lab coat and safety glasses (~ $35).
4. The major course costs are specified above. However, an instructor may require the student to purchase additional materials, such as a laboratory notebook or course notes.

Laboratory Requirements:
1. A laboratory notebook. The instructor will give instructions concerning this notebook.
2. Safety glasses must be worn at all times in the laboratory. Good quality safety glasses are available from the bookstore or from most hardware stores (approx. $10-20). Normal prescription glasses may be worn, but for safety reasons, the use of contact lenses is not permitted [vapours can dissolve in the fluids between your eye and the lens and cause serious damage to the cornea].
3. A sturdy cotton lab coat is required (approx. $10-20).
4. The major course costs are specified above. However an instructor may require the student to buy additional materials such as a laboratory notebook or course notes.

G. Bibliography:
Determined by individual teacher.

H. Teaching Methods:
The course will be 75 hours, divided into Lecture and Laboratory periods; media, lectures/hand-outs posted on Lea:

Lectures: 45 hours
Two 1.5-hour lectures per week, consisting of the introduction of new material.

Laboratory: 30 hours
In Organic Chemistry I, the laboratory periods are 3 hours in length so the student will be in the laboratory for at least 10 periods. There may be the occasional tutorial or workshop but most of the weeks the student will perform experiments utilizing some of the standard techniques [recrystallization, reflux, distillation, extraction] and instrumentation [for melting point, infra-red, gas chromatography] of organic chemistry.

I. Departmental Policies:
Please Note:
 a) A student may drop the lowest unit test mark, if it is lower than the final exam mark, so that the remaining unit tests are worth 20% of the final grade, and the final exam is worth 40% of the final grade. Please note that this arrangement is not available for a student who is assigned a grade of zero on a unit test because of cheating.
 b) To pass the laboratory portion of the course, a minimum of 60% of the total laboratory grade must be obtained. Failing this, a laboratory grade of zero will be given and a maximum grade of 55 will be allowed for the course.
 c) Notwithstanding other class grades, if a student passes the laboratory portion of the course, a grade of 60% or more on the final exam will guarantee a pass in the course.
 d) Every effort will be made to ensure equivalence amongst the various sections of the course. Laboratory experiments are common to all sections, common policies are used with respect to replacement of term grades with final exam marks, the requirements of lab projects are reviewed by the course committee, the standard required to pass the course is that of the common text used, and the final exam is both agreed upon and graded by all members of the course committee.

Regulations:
 a) Regular attendance is expected. If lectures are missed, it is the responsibility of the student to cover the material missed and to be aware of any announcements made concerning assignments, quizzes, tests or changes to the laboratory schedule.
 b) Students must attend the laboratory session in which they are officially registered.
 c) There will be no make-up tests, quizzes or laboratory periods. If you miss an evaluation session or deadline due to illness, you must notify your instructor as soon as possible. A valid medical note is required to prove absence for a medical reason. If a test is missed for a valid reason, then the final exam mark will be used as a basis for a substitute for the missed test mark. Late homework policy will be determined by individual teacher.
d) Periodically there will be workshops held during the laboratory period. Attendance is required. Quizzes or assignments may be given during these workshops.

e) **A special note concerning the use of chemicals**: this course uses chemicals as part of its normal teaching practices. If a student has experienced allergic reactions in the past due to any particular chemical or chemicals he or she must inform the instructor. In the event that an allergic reaction is experienced at the college, the student should report to Campus Security immediately (local 5226, 5231, or 9-514-398-7777).

f) Cell phones and computers may only be used during class for pedagogical purposes.

g) Students are expected to behave respectfully towards their classmates and teachers. In case of inappropriate behavior a student will be asked to leave the class or the lab session. If an assessment is planned for this session, a mark of zero will be given in that case.

J. College Policies:

a) **Mid-Semester Assessment MSA** (Article 3.3): First and second semester students will receive an MSA in accordance with College procedures.

b) **Changes to Evaluation Plan in Course Outline** (Article 4.3): Changes to the evaluation plan, during the semester, requires unanimous consent.

c) **Religious Holidays** (Article 3.2): Students who wish to observe religious holidays must inform their teacher in writing within the first two weeks of the semester of their intent.

d) **Student Rights and Responsibilities**: (Article 3.2, item 19.) It is the responsibility of students to keep all assessed material returned to them in the event of a grade review. (The deadline for a Grade Review is 4 weeks after the start of the next regular semester.)

 (Article 3.3, item 7.) Students have the right to receive the results of evaluation, for regular day division courses, within two weeks. For evaluations at the end of the semester/course, the results must be given to the student by the grade submission deadline. Where applicable: for intensive courses (i.e.: intersession, abridged courses), timely feedback must be adjusted accordingly.

e) **Cheating and Plagiarism** (Article 8.1 & 8.2): Cheating and plagiarism are serious infractions against academic integrity which is highly valued at the College; they are unacceptable at John Abbott College. Students are expected to conduct themselves accordingly and must be responsible for all of their actions. **Cheating**: Cheating means any dishonest or deceptive practice relative to examinations, tests, quizzes, lab assignments, research papers or other forms of evaluation tasks. Cheating includes, but is not restricted to, making use of or being in possession of, unauthorized material or devices and/or obtaining or providing unauthorized assistance in writing examinations, papers or any other evaluation task and submitting the same work in more than one course without the teacher’s permission. It is incumbent upon the Department through the teacher to ensure students are forewarned about unauthorized material, devices or practices that are not permitted. **Plagiarism**: Plagiarism is a form of cheating. It includes the intentional copying or paraphrasing (expressing the ideas of someone else in one’s own words), of another person's work or the use of another person’s work or ideas without acknowledgement of its source. Plagiarism can be from any source including books, magazines, electronic or photographic media or another student's paper or work.