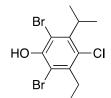
Question 1 – Provide a systematic name for each of the following compounds.

a.


b.

C.

$$O_2N$$
 NO_2

, d

e.

f.

g

h

Question 2 – Draw structures for all constitutional isomers with molecular formula C_8H_{10} that contain an aromatic ring.

Question 3 – Indicate whether each of the following compounds is aromatic, non-aromatic or anti-aromatic.

a.

b.

c.

d

e.

f.

g

h

Question 4 – For each of the following compounds, determine whether the ring is activated or deactivated, then determine the strength of activation/deactivation, and finally, determine the expecting directing effects.

a.

h

c.

d

e.

f.

$$\text{Hoo}_{N} \circ$$

g

h

Question 5 – The following compound has two aromatic rings. Identify which ring is expected to be more reactive toward an electrophilic aromatic substitution.

Question 6 – Rank the following compounds in order of increasing reactivity toward electrophilic aromatic substitution:

Question 7 – Draw a mechanism for each of the following transformations:

a.
$$CI_{2}$$

$$FeCI_{3}$$
b.
$$HNO_{3}$$

$$H_{2}SO_{4}$$
c.
$$H_{2}SO_{4}$$

$$Heat$$
d.
$$CH_{3}CI$$

$$AICI_{3}$$

Question 8 – Predict the expected product(s) when benzene is treated with each of the following alkyl halides in the presence of AlCl₃. In each case, assume conditions have been controlled to favour monoalkylation.

a.
$$CI$$
 b. CI c. CI

Question 9 – Provide plausible mechanisms for the following reactions.

Question 10 – Predict the major product for each of the following reactions:

a. O Br O
$$Cl_2$$
 Br NO₂ H_2SO_4

c.
$$HNO_3$$

$$H_2SO_4$$
e.
$$H_2SO_4$$

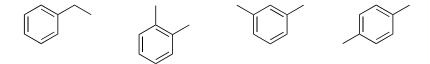
$$H_2SO_5$$

$$H_2$$

Question 11 – Starting with benzene and using any other necessary reagents of your choice, design a synthesis for each of the following compounds. The synthesis will require more than a single step. In some cases, there may be more than one plausible answer.

Solutions

Question 1

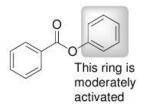

Using common names

- a. 3-isopropylbenzaldehyde (or *meta*-isopropylbenzaldehyde)
- b. 2-bromotoluene (or *ortho*-bromotoluene)
- c. 2,4-dinitrophenol
- d. 2-ethyl-1,4-diisopropylbenzene
- e. 2,6-dibromo-4-chloro-3-ethyl-5-isopropylphenol
- f. 4-bromo-2-ethylphenol
- g. 4-ethylbenzoic acid (or para-ethylbenzoic acid)
- h. 4-bromo-3-chloro-5-nitrobenzoic acid

Using branched names

- a. 3-(1-methylethyl)benzaldehyde (or *meta*-(1-methylethyl)benzaldehyde)
- d. 2-ethyl-1,4-di(1-methylethyl)benzene
- e. 2,6-dibromo-4-chloro-3-ethyl-5-(1-methylethyl)phenol

Question 2


Question 3

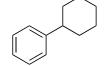
- a. Aromatic
- b. *anti*-aromatic
- c. Aromatic
- d. Non-aromatic
- e. Aromatic
- f. Aromatic
- g. *anti*-aromatic
- h. Non-aromatic

Question 4

- a. i) ring is deactivated. Ii) strongly deactivating and iii) meta-directing
- b. i) ring is deactivated. Ii) moderately deactivating and iii) meta-directing
- c. i) ring is deactivated. Ii) weakly deactivating and iii) ortho, para-directing
- d. i) ring is deactivated. Ii) moderately deactivating and iii) meta-directing
- e. i) ring is activated. Ii) moderately activating and iii) ortho, para -directing
- f. i) ring is activated. Ii) moderately activating and iii) ortho, para -directing
- g. i) ring is deactivated. Ii) strongly deactivating and iii) meta-directing
- h. i) ring is activated. Ii) moderately activating and iii) ortho, para -directing

Question 5

Question 6


(least reactive toward EAS) **E < B < A < D < C** (most reactive toward EAS)

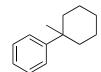
Question 7

Refer to textbook/course notes for the solutions.

Question 8

a.

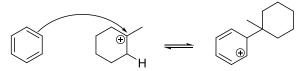
b


c.

involved rearrange

rearrangement of alkyl carbocation

d.


involved rearrangement of alkyl carbocation

Question 9

a.

Step 1 - alkyl halide activation

Step 2 - Attack by pi-electrons of benzene

1,2-hydride shift

Step 2 - Elimination to restore aromaticity

b.

Question 10

a. O Br O b.

d.

f.

c. O₂N

e. SO₃H

Question 11 (Note: Normally you would be expected to draw out each intermediate during a synthesis)

- a. 1. AlCl₃ and CH₃Cl
 - 2. Na₂Cr₂O₇, H₂SO₄, H₂O and heat
 - 3. HNO₃ and H₂SO₄
 - 4. Br₂ and FeBr₃
- b. 1. AlCl₃ and (CH₃)₂CHCl
 - 2. AlCl₃ and (CH₃)₂CHCl
 - 3. Br₂ and FeBr₃
- c. 1. AlCl₃ and CH₃Cl
 - 2. HNO₃ and H₂SO₄
 - 3. Br₂ and FeBr₃
- d. 1. AlCl₃ and (CH₃)₃CCl
 - 2. HNO₃ and H₂SO₄
 - 3. excess Cl₂ and FeCl₃
- e. 1. Br₂ and FeBr₃
 - 2. SO₃, H₂SO₄
 - 3. Cl₂ and FeCl₃
- f. 1. AlCl₃ and (CH₃)₂CHCl
 - 2. AlCl₃ and (CH₃)₂CHCl
 - 3. HNO₃ and H₂SO₄
 - 4. Na₂Cr₂O₇, H₂SO₄, H₂O and heat
- g. 1. AlCl₃ and (CH₃)₃CCl
 - 2. HNO₃ and H₂SO₄
 - 3. Br₂ and FeBr₃
 - 4. Cl₂ and FeCl₃
- h. 1. AlCl₃ and (CH₃)₂CHCl
 - 2. Br₂ and FeBr₃
 - 3. Na₂Cr₂O₇, H₂SO₄ and H₂O
 - 4. HNO₃ and H₂SO₄
 - 5. Cl₂ and FeCl₃
- i. 1. (CH₃)₂CHC(O)Cl, AlCl₃
 - 2. H₂O
 - 3. HNO₃, H₂SO₄
 - 4. NH₂NH₂, NaOEt, heat
- j. 1. (CH₃)₃CCl, AlCl₃
 - 2. CH₃C(O)Cl, AlCl₃
 - 3. H₂O
 - 4. Br₂, FeBr₃
- k. 1. CH₃C(O)Cl, AlCl₃
 - 2. H₂O
 - 3. HNO₃, H₂SO₄
 - 4. H₂, Pd/C
 - 5. NaNO₂, HCl

6. Cu₂O, Cu²⁺, H₂O