(15) 1. Use algebraic techniques to evaluate the following limits. If a limit fails to exist, use one of the symbols $-\infty$ or ∞ as appropriate.
(a) $\lim _{x \rightarrow 10^{+}} \frac{x+5}{-x+10}$
(b) $\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x^{2}-x-6}$
(c) Find $\lim _{x \rightarrow+\infty} \frac{(3+7 x)(1-2 x)}{4 x^{4}+1}$
(d) $\lim _{x \rightarrow 0} \sin x\left(\frac{\sin x}{x}-\cot x\right)$
(e) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x+3}-2}$
(4) 2. Given the function f defined by $f(x)=\frac{x+5}{x^{2}+2 x-15}$
(a) Find both the values of x where $f(x)$ is discontinuous
(b) Find the limit of $f(x)$ as x approaches each of the values found in part (a)
(3) 3. Find constants a such that the function is continuous for all real numbers
$f(x)=\left\{\begin{array}{cc}12 & x \leq-3 \\ a x+3 & -3<x<5 \\ -12 & x \geq 5\end{array}\right.$
4. Complete each part below
(a) State the limit definition of the derivative of a function $f(x)$.
(b) Use the limit definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\sqrt{8 x+17}$
(28) 5. Find $\frac{d y}{d x}$ for each of the following functions. Do not simplify your answer.
(a) $y=\frac{2}{3 x}+e^{\sin x}-\frac{1}{\sqrt[3]{x^{2}}}+\ln 2$
(b) $y=\sqrt[3]{\frac{3 x+2}{5 x^{2}-1}}$
(c) $y=3(\sin x)^{2 x}$
(d) $y=\log (x+1)+x^{3} 3^{x}$
(e) $y=\ln \left[\frac{\sqrt{x^{2}+1}(2 x+1)^{3}}{\sqrt[3]{3 x^{4}-2}}\right]$
(Hint: Use the properties of logarithmic functions to simplify the problem first)
(f) $x y^{2}=e^{x y}-3 e^{x}$
(g) $y=\frac{e^{3-x} \sqrt{x+1}}{\cos 2 x}$
(5) 6. Let $f(x)=x^{3}(3 x+4)^{2}$

Find the x-coordinates, if any, at which the graph of $f(x)$ has a horizontal tangent.
(5) 7. Find the equation of the tangent line to the graph of $f(x)=\frac{2+\sqrt{x}}{5 x+1}$ at point $\left(1, \frac{1}{2}\right)$.
(4) 8. Use the second derivative test to find the relative (local) extrema of $f(x)=\frac{1}{2} x^{4}-4 x^{2}+5$
(4) 9. Find the absolute extrema of $f(x)=2 x^{4}-36 x^{2}+20$ on the interval $[-4,-1]$.
(11) 10. Given the function $f(x)=x^{5}-5 x^{4}$

List all x and y intercepts, vertical and horizontal asymptotes, relative extrema, points of inflection, intervals where $f(x)$ is increasing, decreasing, concave up and concave down.
Use all the above and sketch a carefully labelled graph of $f(x)$
(5) 11. Mary has 1800 m of fence which will be used to enclose 3 sides of a rectangular field. The fourth side has a river and no fence is needed. What dimensions will give her maximum area?
(5) 12. Suppose the average cost is $\bar{c}=100+3 x+0.1 x^{2}$ and the demand is $p=30 x-0.9 x^{2}$
(a) Find the Profit function
(b) Find the marginal profit
(c) Evaluate the marginal profit when $x=3$. Interpret the result.
(6) 13. The demand function for a certain product is $p=\sqrt{16-x}$ where p is the price per unit of the product in dollars and x is the number of units of the product.
(a) State the domain of the function
(b) Find the price elasticity of demand, η
(c) State the intervals where the function is elastic, inelastic and of unit elasticity
(d) Find the price elasticity of demand when $x=9$
(e) At $x=9$, if the price increased by 4% what is the change in demand?

Answers

1. a) $-\infty$
b) $-\frac{2}{5}$
c) 0
d) -1
e) 4
2. a) $-5,3$
b) $\lim _{x \rightarrow-5} f(x)=-\frac{1}{8} \quad$ and $\lim _{x \rightarrow 3} f(x)=$ D.N.E.
3. $a=-3$
4. a) $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
b) $f^{\prime}(x)=\frac{4}{\sqrt{8 x+17}}$
5. a) $\frac{d y}{d x}=-\frac{2}{3} x^{-2}+\cos x e^{\sin x}+\frac{2}{3} x^{-5 / 3}$
b) $\left.\frac{d y}{d x}=\frac{1}{3}\left(\frac{3 x+2}{5 x^{2}-1}\right)^{-2 / 3} \frac{3\left(5 x^{2}\right.}{\underline{-}-1)-10 x(3 x+2)}\left(5 x^{2}-1\right)^{2}\right)$
c) $\frac{d y}{d x}=3(\sin x)^{2 x}\left[\frac{2 x \cos x}{\sin x}+2 \ln (\sin x)\right]$
d) $\frac{d y}{d x}=\frac{1}{(x+1) \ln (10)}+x^{3} 3^{x} \ln (3)+3 x^{2} 3^{x}$
e) $\frac{d y}{d x}=\frac{x}{x^{2}+1}+\frac{6}{2 x+1}-\frac{4 x^{3}}{3 x^{4}-2}$
f) $\frac{d y}{d x}=\frac{y e^{x y}-3 e^{x}-y^{2}}{2 x y-x e^{x y}}$
g) $\frac{d y}{d x}=\frac{\left[-e^{3-x} \sqrt{x+1}+\frac{1}{2}(x+1)^{-1 / 2} e^{3-x}\right] \cos 2 x-(-2 \sin 2 x) e^{3-x} \sqrt{x+1}}{\cos ^{2} 2 x}$
6. $x=-\frac{4}{3}, x=-\frac{4}{5}, x=0 \quad$ 7. $y=-\frac{1}{3} x+\frac{5}{6} \quad$ 8. Rel. Max: $(0,5)$, Rel. Min: $(-2,-3)$ and $(2,-3)$
7. absolute maximum is -14 at $x=-1$; absolute minimum is -142 at $x=-3$
8. x-int:(0,0), (5,0); y-int:(0,0); no asymptotes ; Rel. Max:(0,0); Rel. Min:(4, -256); IP:(3, -162); Dec: $(0,4) ;$ Inc: $(-\infty, 0) \cup(4, \infty) ; \mathrm{CD}:(-\infty, 0) \cup(0,3) ; \mathrm{CU}:(3, \infty)$

9. Dim 450 m by 900 m
10. a) $P=-x^{3}+27 x^{2}-100 x \quad$ b) $P^{\prime}=-3 x^{2}+54 x-100$
c) $P^{\prime}(3)=35 ; \quad P^{\prime}(3) \approx P(4)-P(3)$
11. a) $0 \leq x \leq 16 \quad$ b) $\eta=-\frac{32}{x}+2=\frac{2 x-32}{x}$
c) elastic at $0 \leq x<10.67$; inelastic at $10.67<x \leq 16$; unit elasticity at $x=10.67$
d) the demand will decrease by 6.24%
