1. Let $\mathbf{u}_{\mathbf{1}}=(3,-1,2)$ and $\mathbf{u}_{\mathbf{2}}=(3,1,5)$.
(a) Express the vector $\mathbf{v}=(9,11,27)$ as a linear combination of $\mathbf{u}_{\mathbf{1}}$ and $\mathbf{u}_{\mathbf{2}}$ if possible.
(b) Find k such that the vector $\mathbf{w}=(-5,4, k)$ is a linear combination of \mathbf{u}_{1} and \mathbf{u}_{2}.
2. Let $\mathbf{a}_{1}=\left[\begin{array}{l}6 \\ 3 \\ 4\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}9 \\ -3 \\ 5\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}7 \\ 6 \\ h\end{array}\right]$.
(a) Find h so that \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.
(b) For the h that you found in the previous part, express \mathbf{b} as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.
3. Let $\mathbf{b}_{1}=(h, 5,7), \mathbf{b}_{2}=(-1,3,7)$, and $\mathbf{b}_{3}=(1,1,2)$.

Find h so that $\mathbf{b}_{3} \in \operatorname{Span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$.
4. (a) Express the plane $x-3 y+4 z=0$ as a span of vectors.
(b) Express the intersection of the two planes $x-3 y+4 z=0$ and $2 x+z=0$ as a span of vectors.
5. Find an equation of the plane in form $A x+B y+C z=D$ that is spanned by the vectors $(2,3,-1)$ and $(4,1,5)$.
6. Let $\mathbf{u}_{\mathbf{1}}=(2,0,3,-1), \mathbf{u}_{\mathbf{2}}=(-4,0,-6,2), \mathbf{u}_{\mathbf{3}}=(5,5,0,3)$, $\mathbf{u}_{\mathbf{4}}=(1,3,-6,5), \mathbf{0}=(0,0,0,0)$.
Determine whether each set is linearly independent or linearly dependent.
(a) $\left\{\mathbf{u}_{1}\right\}$
(b) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$
(c) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$
(d) $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$
(e) $\left\{\mathbf{u}_{3}, \mathbf{u}_{4}\right\}$
(f) $\left\{\mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{0}\right\}$
7. Let $\mathbf{u}_{\mathbf{1}}=(5,2,-1,6), \mathbf{u}_{\mathbf{2}}=(3,1,0,2)$, $\mathbf{u}_{3}=(1,1,-2,6), \mathbf{u}_{4}=(1,1,-2,1), \mathbf{u}_{\mathbf{5}}=(1,0,0,0)$.
Determine whether each set is linearly independent or linearly dependent.
(a) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$
(b) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$
(c) $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}, \mathbf{u}_{4}\right\}$
(d) $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
(e) $\left\{\mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
(f) $\left\{\mathbf{u}_{5}\right\}$
8. Let $\mathbf{u}_{\mathbf{1}}=(2,3,-1),, \mathbf{u}_{\mathbf{2}}=(5,4,-1), \mathbf{u}_{3}=(5,-3,2)$, $\mathbf{u}_{4}=(0,6,-2), \mathbf{u}_{5}=(0,-15,5)$.
Determine whether each set is linearly independent or linearly dependent. In each case, state whether the span of the set is a point, line, plane, or \mathbb{R}^{3}.
(a) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$
(b) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$
(c) $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$
(d) $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
(e) $\left\{\mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
9. Let $\mathbf{u}_{1}=(0,-5,5),, \mathbf{u}_{\mathbf{2}}=(0,3,-3), \mathbf{u}_{3}=(1,1,1)$, $\mathbf{u}_{4}=(1,0,1), \mathbf{u}_{\mathbf{5}}=(2,2,0)$, and $\mathbf{0}=(0,0,0)$.
Determine whether each set is linearly independent or linearly dependent. (LI or LD?) In each case, state whether the span of the set is a point, line, plane, or \mathbb{R}^{3}.
(a) $\left\{\mathbf{u}_{1}\right\}$
(b) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$
(c) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$
(d) $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$
(e) $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
(f) $\left\{\mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
(g) $\left\{\mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{0}\right\}$
(h) $\{\mathbf{0}\}$
10. Determine if the following sets are subspaces. For those that are, express the set as a span of vectors. For those that are not, provide a counter-example to show it is not closed under VA or SM.
(a) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=4 s-t, y=s+3 t, z=6 s\right\}$
(b) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 3 x+4 y-z=2\right\}$
(c) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2}=x y\right\}$
(d) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 y-3 z=0\right\}$
(e) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y \geq x\right\}$
(f) $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x=4+2 t, y=-6-3 t\right\}$
(g) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y+z \geq-1\right\}$
(h) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=2 x-3 y\right\}$
(i) $S=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, \begin{array}{l}x y+z=0\end{array}\right\}$
(j) $S=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, \begin{array}{c}2 x=y-z\end{array}\right\}$
(k) $S=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x=6 t, y=4 t\right.$ some $\left.t \in \mathbb{R}\right\}$
11. Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
(a) Express \mathbf{a}_{3} as linear combinations of \mathbf{a}_{1} and \mathbf{a}_{2} if possible.
(b) Is $\left\{\mathbf{a}_{1}\right\}$ a basis for \mathbb{R}^{2} ? Why or why not?
(c) Is $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ a basis for \mathbb{R}^{2} ? Why or why not?
(d) Is $\left\{\mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ a basis for \mathbb{R}^{2} ? Why or why not?
12. Let $\mathbf{u}_{\mathbf{1}}=(4,2,5), \mathbf{u}_{\mathbf{2}}=(3,-1,-2)$, and $\mathbf{u}_{3}=(6,2,0)$
(a) Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ a basis for \mathbb{R}^{3} ? Justify.
(b) Is it possible to express \mathbf{u}_{3} as a linear combination of \mathbf{u}_{1} and \mathbf{u}_{2} ? Justify without solving.
(c) Is it possible to express the vector $(9,5,2)$ as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} ? Justify without solving.
13. Let $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$.
(a) Is \mathbf{v} in $\operatorname{Nul}(A)$? Justify your answer.
(b) Is \mathbf{v} in $\operatorname{Col}(A)$? Justify your answer.
14. Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$.
(a) Find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Nul}(A)$.
(c) Is \mathbf{v}_{1} in $\operatorname{Nul}(A)$? Justify your answer.
(d) Is \mathbf{v}_{1} in $\operatorname{Col}(A)$? Justify your answer.
(e) Is \mathbf{v}_{2} in $\operatorname{Nul}(A)$? Justify your answer.
(f) Is \mathbf{v}_{2} in $\operatorname{Col}(A)$? Justify your answer.
15. Let $\mathbf{a}_{\mathbf{1}}=(2,3,-1,1), \mathbf{a}_{\mathbf{2}}=(-2,-3,1,-1)$, $\mathbf{a}_{\mathbf{3}}=(2,3,1,5), \mathbf{a}_{4}=(2,3,2,7), \mathbf{a}_{\mathbf{5}}=(4,6,3,12)$.
Find a basis for $S=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}\right\}$.
16. The matrix $A=\left[\begin{array}{rrrrrr}2 & -6 & 5 & 3 & -8 & 18 \\ -3 & 9 & -1 & -5 & -1 & -36 \\ 0 & 0 & 4 & 8 & -8 & 36\end{array}\right]$ has reduced form $R=\left[\begin{array}{rrrrrr}1 & -3 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 1 & 0 & 5\end{array}\right]$.
(a) Choose a basis for $\operatorname{Col}(A)$ from the columns of A.
(b) Choose a basis for $\operatorname{Nul}(A)$.
17. The matrix $A=\left[\begin{array}{cccccc}5 & 4 & 1 & 0 & 1 & 13 \\ 4 & 5 & -1 & 0 & 1 & 14 \\ -4 & -4 & 0 & 0 & 0 & -12 \\ 3 & 2 & 1 & 0 & 1 & 7\end{array}\right]$
reduces to $R=\left[\begin{array}{cccccc}1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Choose a basis for $\operatorname{Col}(A)$ from the columns of A.
(b) Choose a basis for $\operatorname{Nul}(A)$.
18. The matrix $A=\left[\begin{array}{rrrrrr}6 & -9 & 2 & -12 & 1 & 8 \\ -6 & 9 & 5 & 54 & 2 & -1 \\ 8 & -12 & 1 & -26 & 0 & 9 \\ 0 & 0 & 3 & 18 & 3 & 3\end{array}\right]$ reduces to $R=\left[\begin{array}{rrrrrr}1 & -3 / 2 & 0 & -4 & 0 & 1 \\ 0 & 0 & 1 & 6 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{\mathbf{6}}$ be the columns of A.
(a) Choose a basis for $\operatorname{Col}(A)$ from the columns of A.
(b) Express each column of A that is not in your basis as a linear combination of your basis vectors.
(c) Find a basis for $\operatorname{Nul}(A)$.
19. The matrix $\left[\begin{array}{rrrrrr}3 & 3 & a & c & 1 & e \\ b & 2 & -8 & 6 & f & 15 \\ 0 & d & 0 & 2 & 1 & 6\end{array}\right]$ has reduced form $\left[\begin{array}{rrrrrr}1 & 0 & 4 & -1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$.
Find a, b, c, d, e, and f.
20. The matrix $\left[\begin{array}{rrrrrr}2 & a & 5 & 3 & b & c \\ d & 9 & e & -5 & -1 & -36 \\ 0 & 0 & 4 & f & -8 & 36\end{array}\right]$ has reduced form $\left[\begin{array}{rrrrrr}1 & -3 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 1 & 0 & 5\end{array}\right]$.
Find a, b, c, d, e, and f.
21. Suppose A is $n \times m, \operatorname{Dim}(\operatorname{Col}(A))=2, \operatorname{Dim}(\operatorname{Nul}(A))=3$ and $\operatorname{Dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)=4$. Find n and m.
22. Suppose A is an 5×8 matrix.
(a) What is the minimum nullity of A ?
(b) Can the system $A \mathbf{x}=\mathbf{0}$ have a unique solution?
(c) What is minimum nullity of A^{T} ?
(d) Can the system $A^{T} \mathbf{x}=\mathbf{0}$ have a unique solution?
23. Suppose A is a 6×4 matrix, and that the nullity of A^{T} is 3 .
(a) Find the nullity of A.
(b) Does the system $A \mathbf{x}=\mathbf{0}$ have a unique solution?
(c) Are the columns of A linearly independent?
24. Suppose A is 5×3 and the general solution to the equation $A \mathbf{x}=\mathbf{b}$ is given by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]+\mathrm{s}\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]+\mathrm{t}\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$.
(a) Find the general solution to $A \mathbf{x}=\mathbf{0}$.
(b) Find the rank of A.
25. Suppose $\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{r}-3 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right]\right\}$ for a matrix A, and that $\mathbf{u}=\left[\begin{array}{r}6 \\ -1 \\ 2\end{array}\right]$ is one particular solution to $A \mathbf{x}=\mathbf{b}$.

What is the general (parametric) solution to $A \mathbf{x}=\mathbf{b}$?
26. Suppose the general solution to $A \mathbf{x}=\mathbf{b}$ is given by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+s\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 5\end{array}\right]$.
(a) Find a non-zero solution to the homogeneous equation $A \mathrm{x}=\mathbf{0}$
(b) Find the general solution to $A \mathbf{x}=2 \mathbf{b}$.
(Hint: $\mathrm{A}(2 \mathbf{x})=2(\mathrm{Ax})$.)
27. Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}6 \\ -4 \\ 3\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. Suppose A is 7×3, and that $\operatorname{Nul}(A)=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
(a) Find the nullity of A.
(b) Find the rank of A.
(c) Give the general solution of $A \mathbf{x}=\mathbf{0}$ in parametric form.
(d) Give the general solution of $A \mathbf{x}=A \mathbf{w}$ in parametric form. Answers on next page.

1. (a) $\mathbf{v}=-4 \mathbf{u}_{1}+7 \mathbf{u}_{\mathbf{2}}$.
(b) $k=1 / 6$.
2. (a) $h=5$.
(b) $\mathbf{b}=\frac{5}{3} \mathbf{a}_{1}-\frac{1}{3} \mathbf{a}_{2}$.
3. $h=17$.
4. (a) The plane is given by $\operatorname{Span}\left\{\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right] \cdot\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right]\right\}$.
(b) The line is given by $\operatorname{Span}\left\{\left[\begin{array}{c}-1 / 2 \\ 7 / 6 \\ 1\end{array}\right]\right\}$.
5. $8 x-7 y-5 z=0$ or any non-zero multiple.
6. (a) LI.
7. (a) LI.
(b) LD .
(b) LD.
(c) LD.
(c) LD .
(d) LI .
(d) LI .
(e) LI.
(e) LI.
(f) LD.
(f) LI .
8. (a) LI. Plane.
9. (a) LI. Line.
(b) LD. Plane.
(b) LD. Line.
(c) LI. \mathbb{R}^{3}.
(c) LD. Plane
(d) LD. \mathbb{R}^{3}.
(d) LI. \mathbb{R}^{3}.
(e) LD. Line.
(e) LD. \mathbb{R}^{3}.
(f) LI. Plane.
(g) LD. Plane
(h) LD. Point.
10. (a) Yes. $S=\operatorname{Span}\left\{\left[\begin{array}{l}4 \\ 1 \\ 6\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right]\right\}$.
(b) No. Not closed under VA or SM. C-E: Let $\mathbf{u}=(1,0,1)$. $\mathbf{u} \in S$, but $2 \mathbf{u}=\mathbf{u}+\mathbf{u} \notin S$.
(c) No. Not closed under VA. C-E: Let $\mathbf{u}=(1,0,0)$. Let $\mathbf{v}=(0,1,0)$. The vectors \mathbf{u} and \mathbf{v} are in S, but $\mathbf{u}+\mathbf{v}=(1,1,0) \notin S$.
(d) Yes. $S=\operatorname{Nul}\left[\begin{array}{lll}1 & 2 & -3\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$.
(e) No. S is not closed under SM. C-E: Let $\mathbf{u}=(0,1,0)$ and $k=-1$. The vector $\mathbf{u} \in S$, but $k \mathbf{u}=-1(0,1,0)=(0,-1,0) \notin S$.
(f) Yes. $S=\operatorname{Span}\{(2,-3)\}$.
(g) No. Not closed under SM or VA.

C-E: Let $\mathbf{u}=(0,0,-1)$ and $k=2$. The vector $\mathbf{u} \in S$, but $k \mathbf{u}=\mathbf{u}+\mathbf{u} \notin S$.
(h) Yes. $S=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]\right\}$.
(i) No. Not closed under SM or VA.

C-E: Let $\mathbf{u}=(1,1,-1)$ and $k=2$. The vector $\mathbf{u} \in S$, but $k \mathbf{u}=\mathbf{u}+\mathbf{u}=(2,2,-2) \notin S$.
(j) Yes. $S=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.
(k) Yes. $S=\operatorname{Span}\left\{\left[\begin{array}{l}6 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
11. (a) $\mathbf{a}_{3}=\frac{7}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}$.
(b) No, since $\operatorname{Span}\left\{\mathbf{a}_{1}\right\} \neq \mathbb{R}^{2}$. (Takes at least two vectors...)
(c) No, since $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ is linearly dependent. (...and no more than two.)
(d) Yes, since $\left\{\mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ is linearly independent and spans \mathbb{R}^{2}.
12. (a) Yes, since $\left|\begin{array}{ccc}4 & 3 & 6 \\ 2 & -1 & 2 \\ 5 & -2 & 0\end{array}\right| \neq 0$.
(b) No, since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is linearly independent.
(c) Yes, since $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\mathbb{R}^{3}$.
13. (a) No. $A \mathbf{v} \neq \mathbf{0}$.
(b) Yes. $A \mathbf{x}=\mathbf{v}$ is consistent.
14. Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$.
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\} \quad$ (b) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
(c) Yes, $A \mathbf{v}_{1}=\mathbf{0}$.
(d) Yes, $\mathbf{v}_{1}=2 \mathbf{a}_{1}$, double the first column of A.
(e) Yes, $A \mathbf{v}_{2}=\mathbf{0}$.
(f) No, $A \mathbf{x}=\mathbf{v}_{2}$ has no solution.
15. Basis for $S:\left\{\left[\begin{array}{c}2 \\ 3 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 5\end{array}\right]\right\}$.
16. (a) Basis for $\operatorname{Col}(A):\left\{\left[\begin{array}{c}2 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 8\end{array}\right]\right\}$
(b) Basis for $\operatorname{Nul}(A):\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 1 \\ -5 \\ 0 \\ 1\end{array}\right]\right\}$
17. (a) Basis for $\operatorname{Col}(A):\left\{\left[\begin{array}{c}5 \\ 4 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{c}4 \\ 5 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$
(b) Basis for $\operatorname{Nul}(A):\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
18. (a) Basis for $\operatorname{Col}(A):\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{5}\right\}$.
(b) $\mathbf{a}_{2}=-\frac{3}{2} \mathbf{a}_{1}, \mathbf{a}_{4}=-4 \mathbf{a}_{1}+6 \mathbf{a}_{3}, \mathbf{a}_{6}=\mathbf{a}_{1}+\mathbf{a}_{3}$.
(c) Basis for $\operatorname{Nul}(A):\left\{\left[\begin{array}{c}3 / 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ 0 \\ -6 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
19. $(a, b, c, d, e, f)=(12,-2,3,1,16,5)$.
20. $(a, b, c, d, e, f)=(-6,-8,18,-3,-1,8)$.
21. $n=6, m=5$.
22. (a) Max Rank of $A=5$, so Min Nullity of $A=8-5=3$.
(b) No. Solution must have at least 3 parameters.
(c) Min Nullity of A^{T} is 0 .
(d) Yes. Solution is unique when Nullity of A is 0 .
23. (a) 1 .
(b) No. There will be one parameter in the solution.
(c) No. There is a non-trivial solution to $A \mathbf{x}=\mathbf{0}$.
24. (a) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\mathrm{s}\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]+\mathrm{t}\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$
(b) Rank of $A=1$.
25. $\left\{\begin{array}{l}x=6-3 s+5 t \\ y=-1+4 s \\ z=2+2 s+t\end{array}\right.$
26. (a) $(x, y, z)=(1,0,-2)$, for example when $s=1$ and $t=0$.
(b) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]+s\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 5\end{array}\right]$.
27. (a) 2 .
(b) 1 .
(c) $\left\{\begin{array}{l}x=-2 s+5 t \\ y=s \\ z=t\end{array}\right.$
(d) $\left\{\begin{aligned} x & =6-2 s+5 t \\ y & =-4+s \\ z & =3+t\end{aligned}\right.$

