Multiple choice

For each of the following questions, there is <u>only one correct answer</u>. Circle your choice. If two choices are selected for the same question, <u>no marks will be awarded</u>.

- 1. The line y = 2x + 1 has the same slope but a different y-intercept as which one of these lines?
 - A. 2y = x
 - B. $x = \frac{y-1}{2}$
 - C. y = 2
 - D. $x = \frac{y-4}{2}$
- **2.** Which of these functions has a domain of $(1, \infty)$?
 - A. $y = \frac{1}{\sqrt{x-1}}$
 - B. $y = \frac{1}{(x-1)^2}$
 - C. $y = \sqrt{x 1}$
 - D. $y = \frac{1}{x-1}$
- 3. Suppose $ax^2 + bx + c = 0$ has exactly one solution. Then:
 - A. $b^2 4ac > 0$
 - B. $b^2 4ac < 0$
 - C. $b^2 4ac = 0$
 - D. None of the above.
- **4.** Given that $f(g(x)) = (x+3)^2 1$, then f and g can be:
 - A. $f(x) = x + 3, g(x) = x^2 1$
 - B. $f(x) = x^2 + 3$, g(x) = x 1
 - C. $f(x) = x^2 1, g(x) = x + 3$
 - D. $f(x) = (x+3)^2, g(x) = x-1$
- **5.** Let $\vec{u} = \langle 3, 2 \rangle$ and $\vec{v} = \langle -2, 1 \rangle$. Which of the following vectors is the longest?
 - A. \vec{u}
 - B. \vec{v}
 - C. $\vec{u} + \vec{v}$
 - D. $\vec{u} \vec{v}$

- 6. If a ball is thrown upwards at 29.4 metres per second from the top of a building that is 80 metres high, the height of the ball is given by $h(t) = 80 + 29.4t 4.9t^2$ where t is the number of seconds after the ball is thrown. What is the ball's maximum height?
 - A. 80m
 - B. 212.3m
 - C. 124.1m
 - D. 113.1m
- 7. True or False: $f(x) = \frac{(x-3)(x+2)}{(x+1)(x-3)}$ and
 - $g(x) = \frac{x+2}{x+1}$ have the same domain.
 - A. T
 - B. F
- 8. The domain of $f(x) = \sqrt{\frac{(x-1)(x+3)}{x(x+1)}} + 3x + 1$ is
 - A. $[-3, -1) \cup (0, 1]$
 - B. $[-3, -1) \cup (0, 1) \cup (1, +\infty)$
 - C. $(-\infty, -3) \cup (0, 1) \cup (1, +\infty)$
 - D. $(-\infty, -3] \cup (-1, 0) \cup [1, +\infty)$
- **9.** The graph of $y = \log(x + 1) 2$ has
 - A. a vertical asymptote at x = -2
 - B. a vertical asymptote at x = -1
 - C. a horizontal asymptote at y = -2
 - D. a horizontal asymptote at y = -1

10. If $\log_3(x) + \log_3(x-1) = 1 + 3\log_3(x+1)$, then

A.
$$\frac{x^2-x}{(x+1)^3}=3$$

B.
$$\frac{x}{(x-1)(x+1)} = 1$$

C.
$$x(x-1) = 1 + (x+1)^3$$

D.
$$x(x-1)(x+1)^3 = 3$$

11. If 1200 dollars are invested at 1.75% interest compounded biweekly, how much is in the account after 5 years?

A.
$$1200 \cdot \left(1 + \frac{1.75}{26}\right)^{26.5}$$

B.
$$1200 \cdot \left(1 + \frac{0.0175}{52}\right)^{52.5}$$

C.
$$1200 \cdot \left(1 + \frac{0.0175}{26}\right)^{26.5}$$

D.
$$1200 \cdot \left(1 + \frac{1.75}{104}\right)^{104.5}$$

- 13. Suppose θ is an angle in standard position such that $\tan \theta < 0$ and $\cos \theta < 0$. In which quadrant will we find the terminal side of θ ?
 - A. I
 - B. II
 - C. III
 - D. IV
- 14. Suppose $\tan \theta$ is undefined. Which of the following will also be undefined?
 - A. $\cos \theta$
 - B. $\cot \theta$
 - C. $\csc \theta$
 - D. $\sec \theta$

12. Find an equation for the following graph.

A.
$$y = -2^{x+2} + 1$$

B.
$$y = 1 + 2^{x+2}$$

C.
$$y = 2^{x+2} - 1$$

D.
$$y = 1 - 2^{2-x}$$

Short Answer

- **15.** Solve this equation for x: 2(x+2) 5(x-1) = 6(x-3) + 9(x-5)
- **16.** Simplify as much as possible: $\frac{(4x^{-1}y)^2}{2x^2y}$.
- **17.** Solve for x: $x^{-1/2} = 3$.
- **18.** Simplify $\frac{\frac{1}{x+2} + 3}{\frac{x}{x+2} + 3}$.

- 19. If $\log_4(x) = C \log_3(x)$, then $C = \frac{\ln A}{\ln B}$ with A and B real numbers. Find A and B.
- **20.** Change to exponential form: ln(x) = 2.
- **21.** Simplify: $10^{3\log(e)-\log(e^2)-\frac{1}{2}\log(e)}$.
- **22.** Consider the angle $\theta = 5\pi/6$.
 - (a) Sketch θ below in standard position.

(b) Find the exact value of $\sec \theta$.

Long Answer

23. You are given the function f(x) below.

- (a) What is the domain of f?
- (b) What is the range of f?
- (c) Find f(f(-2)).
- (d) Is f invertible?

- **24.** Find $f^{-1}(x)$ if $f(x) = \frac{2x+1}{3x-4}$.
- **25.** Factor completely: $5x^3 10x^2 5x + 10$.
- **26.** (a) Find the x and y-intercepts of the function $g(x) = x^2 8x + 9$.
 - (b) Find the vertex of the graph of g by completing the square.
 - (c) Sketch a graph of the function g.
- **27.** State the domain of (f/g)(x), then simplify (f/g)(x) given that $f(x) = \frac{4x^2 4x 15}{2x^2 5x}$ and $g(x) = \frac{(2x+3)(x+3)}{(x+3)(x+1)}$

28. Solve
$$\frac{x+8}{x^3-9x} = \frac{2}{x^2+3x} - \frac{3}{x^2-9}$$
.

- **29.** Solve for x in each of the following equations:
 - (a) $x^2 45x + 126 = 0$;
 - (b) $\sqrt{7x-5} + \sqrt{3x-5} = 6$;
 - (c) $\sqrt{7x-5} \sqrt{3x-5} = 6$.
- **30.** Write the following expression in terms of logs of x, y and z:

$$\log \sqrt{\frac{xy^2}{z^8}}.$$

- **31.** Solve for x: $3 + \log_5(10) + \log_5(x) = \log_5(3x 1) + 4$.
- **32.** Given $f(x) = -\log_3(-x) + 1$, answer the following.
 - (a) Identify any intercept(s) that occur.
 - (b) Write the equation of any asymptotes.
 - (c) Sketch y = f(x).
 - (d) Is y = f(x) invertible? justify your answer. If f(x) is invertible, find the inverse function f^{-1} .
- **33.** Solve the equation $1 \frac{5^{2x+1}}{3^{4-x}} = 0$. Give your answer in form $x = \frac{\ln A}{\ln B}$.
- **34.** Find all angles in $[0, 2\pi)$ that satisfy the given equation: $2\cos^2\theta \cos\theta = 0$.
- **35.** Simplify: $\cos x + \sin x \tan x$.
- **36.** Given $y = -2\cos(\pi x)$, state the amplitude and period of this function, and sketch its graph. Include two cycles, and clearly label the axes.

Applications

- **37.** A zombie outbreak starts in Serbia with 3 cases in a remote village. After 5 days, a frightening total of 12 zombies has been reported. Let us assume that the number of zombies N(t) after t days grows exponentially $(N(t) = k \cdot b^t)$.
 - (a) Find the value of k using the fact that the initial 3 cases happen at t = 0.
 - (b) Find the value of b.
 - (c) How many zombies will there be after 10 days?
 - (d) After how many days will the entire population of 768 people in the village be converted into zombies if no cure is found?
- **38.** A security camera in a neighborhood bank is mounted on a wall 9 feet above the floor. What angle of depression should be used if the camera is to be directed to a spot 6 feet above the floor and 12 feet from the wall?

Answers

Multiple choice

1. D

3. C

5. D

7. B

9. B

11. C

13. B

2. A

4. C

6. C

8. D

10. A

12. A

14. D

Short Answer

15.
$$x = 4$$

19.
$$C = \frac{\ln 3}{\ln 4}$$

16.
$$\frac{8y}{x^4}$$

20.
$$x = e^2$$

17.
$$x = 1/9$$

18.
$$\frac{3x+7}{4x+6}$$

21.
$$\sqrt{e}$$

(b)
$$\sec(5\pi/6) = -2/\sqrt{3}$$

Long Answer

- **23.** (a) Domain = \mathbb{R}
 - (b) Range = $(-\infty, 0) \cup (1, 3]$
 - (c) f(f(-2)) = 3
 - (d) yes (passes the horizontal line test)

24.
$$f^{-1}(x) = \frac{4x+1}{3x-2}$$

25.
$$5(x-1)(x+1)(x-2)$$

- **26.** (a) *y*-intercept: (0,9), *x*-intercepts: $(4-\sqrt{7},0)$ and $(4+\sqrt{7},0)$
 - (b) vertex at (4, -7)

- **27.** The domain of (f/g) is $\mathbb{R} \setminus \{0, \frac{5}{2}, \frac{-3}{2}, -3, -1\}, (f/g)(x) = \frac{x+1}{x}$
- **28.** x = -7
- **29.** (a) x = 3,42
 - (b) x = 3
 - (c) x = 42
- **30.** $\frac{1}{2}\log x + \log y 4\log z$
- **31.** x = 1
- **32.** (a) *x*-intercept (-3,0)
 - (b) vertical asymptote x = 0

- (d) f(x) is invertible (passes the horizontal line test), $f^{-1}(x) = -3^{1-x}$.
- **33.** $x = \frac{\ln(81/5)}{\ln(75)}$
- **34.** $\theta = \pi/3, \pi/2, 3\pi/2, 5\pi/3$
- **35.** sec *x*
- **36.** A = 2, P = 2.

Applications

- **37.** (a) k = 3
 - (b) $b = 4^{1/5}$.
 - (c) 48
 - (d) 20
- **38.** 14.04°