[4] 1. Suppose $y=f(x)$ is given by the following graph:

(a) State the domain and range of $f(x)$.
(c) Evaluate: $(f \circ f)(1)$
(b) Evaluate: $2 f(-3)+f(-6)$
(d) Does f have an inverse? Why or why not?
[2] 2. Find the equation for the line with y-intercept $(0,3)$ that is perpendicular to the line given by $2 x-3 y=4$. Give your answer in the form $y=m x+b$.
[4] 3. Let $f(x)= \begin{cases}2 x-1 & \text { if } 0 \leqslant x \leqslant 2 \\ x+2 & \text { if } x>2\end{cases}$
(a) Sketch a graph of $y=f(x)$.
(c) Given that f has an inverse,
(b) State the domain and range of $y=f(x)$. state the domain and range of $f^{-1}(x)$.
[3] 4. Simplify and express the answer with positive exponents only: $\frac{10\left(a^{3} b^{-2}\right)^{-3}\left(a^{-1} b^{11}\right)^{0}}{(-2 a)^{4}}$
[2] 5. Factor completely.
(a) $3 x^{2}+8 x+5$
(b) $125 x^{3}-64$
[6] 6. Solve for x using the specified method.
(a) $3(3 x-1)^{2}-8=19$ (taking square roots)
(b) $(x-3)(x+2)=14$ (factoring)
(c) $x^{2}+4899=140 x$ (completing the square)
[3] 7. Use polynomial long division to express $\frac{5 x^{3}+3 x-5}{x+1}$ in the form $Q(x)+\frac{R(x)}{D(x)}$, where the degree of $R(x)$ is less than degree of $D(x)$.
[4] 8. Let $f(x)=\frac{x^{2}-9 x-36}{x^{2}-5 x}$, let $g(x)=\frac{x-12}{x}$, and let $h(x)=\frac{f(x)}{g(x)}$.
(a) Simplify $h(x)$.
(b) Find a formula for $g^{-1}(x)$.
[4] 9. Solve for $x: \frac{x}{x-3}+\frac{5}{2 x-1}=\frac{15}{2 x^{2}-7 x+3}$
[3] 10. Given the quadratic function $f(x)=2 x^{2}-2 x+\frac{1}{2}$;
(a) Find all intercepts.
(b) Find the vertex.
(c) Sketch a graph of the function.
[3] 11. Given the rational function $f(x)=\frac{x^{2}-18 x+17}{x^{3}-17 x^{2}+16 x}$;
(a) State the domain of $f(x)$.
(b) Give the equations of all vertical asymptotes (if any).
(c) Give the equations of all horizontal asymptotes (if any). Do not sketch.
[4] 12. Given the rational function $f(x)=\frac{2-2 x}{x-2}$;
(a) Find all intercepts.
(b) Find all asymptotes.
(c) Sketch a graph of the function.
[2] 13. Let $A=(1,-1)$ and $B=(-2,5)$. Compute the distance between A and B.
[3] 14. Reduce the radical expression: $\sqrt[3]{-8 x^{7} y^{4}} \sqrt[3]{81 x^{2} y^{3}}$
[2] 15. Rationalize the denominator and simplify: $\frac{10}{2 \sqrt{2}+\sqrt{3}}$
[2] 16. Find the domain of $f(x)=\frac{\sqrt{5-x}}{\sqrt{x-3}}$.
[3] 17. Solve: $x-2-\sqrt{6-3 x}=0$.
[2] 18. Sweden would like to open an account in order to prepare for a catastrophic event. If the country can deposit $\$ 3000000$ (which is probably more than enough) at 4% interest rate compounded semi-annually, find the balance in the account after ten years. (Give your answer to the nearest dollar.)
[4] 19. Given the function $y=2^{(1-x)}-4$;
(a) Find all intercepts.
(c) Sketch a graph of the function.
(b) Find the equation of any asymptotes.
[4] 20. Given the function $y=-2 \log _{2}(x+4)$;
(a) Find all intercepts.
(b) Find the equation of any asymptotes.
(c) Sketch a graph of the function.
[3] 21. Express in terms of the simplest possible logarithms: $\log \left(\frac{\sqrt{2 x+1}}{100^{x}(x-3)^{8 / 3}}\right)$
[3] 22. Compress into a single logarithm and simplify the result: $\ln \left(x^{3} y\right)+2 \ln (\sqrt{x z})-3 \ln (x y z)$
[1] 23. Evaluate to four decimal places: $\log _{6}(12)$
[6] 24. Solve the following equations for x :
(a) $\log _{3}(x+3)=3-\log _{3}(x+9)$
(b) $4^{x+5}=8 \cdot\left(\frac{1}{2}\right)^{7-x}$
[3] 25. Suppose $\cos (\theta)=\frac{3}{7}$.
(a) Find the exact value of $\tan (\theta)$ if θ is acute.
(b) Find the exact value of $\tan (\theta)$ if θ is in the 4 th quadrant.
[2] 26. Find the exact value of $\csc (7 \pi / 6)$.
[2] 27. Find all θ in $\left[0^{\circ}, 360^{\circ}\right.$) that satisfy $\sin (\theta)=-\frac{5}{6}$. (Answer in degrees to three decimal places.)
[2] 28. Find all θ in $[0,2 \pi)$ such that $\cot (\theta)$ is undefined. (Give an exact value in radians.)
[3] 29. A math teacher stands in front of the classroom (Say HO-214) looking directly at the back row, which is 3 m away. If she turns 20° degress to the right, she will be looking at Xavier, who is in the back row. If she turns 40° to the left, she will be looking at Yannick, who is also in the back row. How far apart are Xavier and Yannick? (Answer in metres with 3 decimal places of precision.)
[3] 30. Given the function $y=-3 \cos \left(\frac{x}{2}\right)$;
(a) State the amplitude A and the period P.
(b) Sketch a graph. (At least two cycles.)
[4] 31. A triangle has sides of length a, b, c across from angles of measure A, B, C respectively. Suppose $A=35^{\circ}, b=7$ and $c=3$. Find a, B, and C. (Give three decimal places.)
[2] 32. Simplify: $(\csc x-\cot x)(\csc x+\cot x)$
[2] 33. Prove the identity: $\frac{1}{\sin x+\cos x}=\frac{\sec x}{1+\tan x}$
End of Exam

Answers:
1(a) $D=(-7 . \infty), R=(-\infty, 5]$
1(b) -9
1(c) 0
1(d) No. It fails the horizontal line test.
2. $y=-\frac{3}{2} x+3$

3(b) $D=[0, \infty), R=[-1,3] \cup(4, \infty)$
3 (c) $D=[-1,3] \cup(4, \infty), R=[0, \infty)$
4. $5 b^{6} /\left(8 a^{13}\right)$

5(a) $(3 x+5)(x+1)$
5 (b) $(5 x-4)\left(25 x^{2}+20 x+16\right)$
6 (a) $x=4 / 3, x=-2 / 3$.
6 (b) $x=5, x=-4$.
6 (c) $x=69, x=71$.
7. $\frac{5 x^{3}+3 x-5}{x+1}=5 x^{2}-5 x+8+\frac{-13}{x+1}$

8(a) $h(x)=\frac{x+3}{x-5}$
$8\left(\right.$ b) $g^{-1}(x)=\frac{12}{1-x}$
9. $x=-5$

10(a) y-int: $(0,1 / 2) ; x$-int: $(1 / 2,0)$.
10(b) Vertex: $(1 / 2,0)$.

11(a). $D=\mathbb{R} \backslash\{0,1,16\}$.
11(b) V.A.'s at $x=0$ and $x=16$.
11(c) H.A. at $y=0$.
12(a) y-int: $(0,-1) . x$-int: $(1,0) . \quad 20(\mathrm{a}) y$-int: $(0,-4), x$-int $(-3,0)$.
$12(\mathrm{~b})$ V.A. at $x=2$. H.A. at $y=-2$. 20(b) V.A. at $x=-4$. No H.A.
12(c).

13. $3 \sqrt{5}$
14. $-6 x^{3} y^{2} \sqrt[3]{3 y}$
15. $4 \sqrt{2}-2 \sqrt{3}$
16. $D=(3,5]$
17. $x=2$
18. $\$ 4,457,842$

19(a) y-int: $(0,-2), x$-int: $(-1,0)$.
19(b) H.A. at $y=-4$. No V.A.

20(c)

21. $\frac{1}{2} \log (2 x+1)-2 x-\frac{8}{3} \log (x-3)$.
22. $\ln \left(\frac{x}{y^{2} z^{2}}\right)$
23. 1.3868

24(a) $x=0$.
$24(\mathrm{~b}) x=-14$.

25(a) $2 \sqrt{10} / 3$
25(b) $-2 \sqrt{10} / 3$
26. -2
27. $\theta=236.443^{\circ}, \theta=303.557^{\circ}$
28. $\theta=0, \theta=\pi$.
29. 3.609 m
30. $A=3, P=4 \pi$

31. $a=4.858, C=20.747^{\circ}, B=124.253^{\circ}$
32. 1
33. Right Side $=\frac{\frac{1}{\cos x}}{1+\frac{\sin x}{\cos x}}=\frac{\frac{1}{\cos x}}{1+\frac{\sin x}{\cos x}} \cdot \frac{\cos x}{\cos x}=\frac{1}{\cos x+\sin x}=$ Left Side. \checkmark

