1. [9 pts] Let y = f(x) and y = g(x) be given by the graphs:

(a) State the domain and range of f.

If possible, evaluate the following or state that it is undefined:

- (b) (3f 5g)(4) =
- (c) $(f \circ g)(-1) =$
- (d) $(g \circ f)(-4) =$
- (e) $f^{-1}(2) =$
- (f) Is g invertible? Justify your answer.
- (g) Sketch a graph of y = -2g(x)
- 2. [1 pt] Find an equation in slope-intercept form for the line passing through the point (3,4) and perpendicular to the y-axis.
- 3. [4 pts] Let $f(x) = 5 3x + x^2$ and g(x) = 4x 6.
 - (a) Simplify $(f \cdot g)(x)$.
 - (b) Simplify $(g \circ f)(x)$.
- 4. [4 pts] Sketch a graph of f(x) defined by:

$$f(x) = \begin{cases} -\frac{x}{2} + 1 & \text{if } -4 \le x \le 2\\ x - 3 & \text{if } 2 < x \le 4 \end{cases}$$

- 5. [6 pts] Solve for x:
 - (a) $3x^2 + 11x = 20$
 - (b) $x^5 x^4 x^3 = 0$
 - (c) 17(x-2) < 4x 9(x+5)
- 6. [2 pts] Solve by completing the square: $x^2 16x + 62 = 0$

- 7. [3 pts] Given the quadratic function $f(x) = 3x^2 6x + 5$,
 - (a) find all intercepts;
 - (b) find the vertex; and
 - (c) sketch its graph.
- 8. [2 pts] Use polynomial long division to write $\frac{6x^5 17x^3 + 2x^2 1}{2x^2 5}$ in the form $Q(x) + \frac{R(x)}{D(x)}$.
- 9. [7 **pts**] Let $f(x) = \frac{x^2 4x}{x^2 5x 14}$ and $g(x) = \frac{x}{x+2}$.
 - (a) Simplify f(x) g(x).
 - (b) Find $g^{-1}(x)$.
 - (c) Simplify g(g(x)).
- 10. **[3 pts]** Simplify $(x^3y)^{\frac{1}{4}} \sqrt[4]{x^5y^3}$.
- 11. [4 pts] Given the rational function $f(x) = \frac{2x-3}{x-3}$,
 - (a) state its domain;
 - (b) find all the intercepts;
 - (c) find all asymptotes; and
 - (d) sketch its graph.
- 12. [4 pts] Solve $\frac{x+2}{x+1} \frac{2x+4}{x+3} = \frac{2}{x^2+4x+3}$.
- 13. [3 pts] Rationalize the denominator (and simplify) $f(x) = \frac{5 + 2\sqrt{3}}{7 \sqrt{3}}$.
- 14. [2 pts] Find the domain of $f(x) = \frac{x}{\sqrt{x-3}}$.
- 15. [3 pts] Find the distance between (2, -3) and (-6, 1).
- 16. [3 pts] If \$6000 is invested at 3% interest compounded monthly, find the value after 20 years. (Give your answer to the nearest cent.)
- 17. [3 pts] Express as a single logarithm and simplify: $\frac{4}{3}\ln(xz) \frac{2}{3}\ln(yz) \frac{1}{3}\ln(xy)$.
- 18. [3 pts] Express in terms of the simplest possible logarithms: $\log \left(\frac{x^2y}{10\sqrt{zy^5}} \right)$.
- 19. [2 pts] Evaluate $log_2(50)$ to four decimal places.
- 20. [4 pts] For the function $f(x) = 2^{-x} 8$,
 - (a) find the *y*-intercept if any,
 - (b) find the x-intercept if any,
 - (c) find the equation of any asymptotes,
 - (d) sketch a graph of the function.
- 21. [4 pts] For the function $g(x) = 1 \log_3(x+9)$,

- (a) find the y-intercept if any,
- (b) find the x-intercept if any,
- (c) find the equation of any asymptotes,
- (d) sketch a graph of the function.
- 22. **[4 pts]** Solve:
 - (a) $\log x + \log(x 3) = \log 4 + 1$
 - (b) $2 \ln x = 1$
- 23. [4 pts] A ramp must be built to roll a cart up to a loading dock which is 2m above the ground. If the ramp is to make an angle of 20° with the ground, what is the horizontal distance of the ramp? Draw a sketch, solve the problem, and give your answer with two decimal places of precision.
- 24. [1 pt] Convert 160° to radians. Give an exact value.
- 25. [2 pts] Find the exact value of $\cot(\pi/2)$.
- 26. [2 pts] Find all angles θ in $[0^{\circ}, 360^{\circ})$ such that $\cos \theta = -2/3$. (Two decimal places.)
- 27. [2 pts] Find all angles θ in $[0, 2\pi)$ such that $\csc \theta = -\sqrt{2}$. Give exact values.
- 28. [2 pt] For the following graph, find a formula of the form $y = a \sin(bx)$ or $y = a \cos(bx)$.

- 29. **[3 pts]** Prove the identity: $\frac{1}{1 + \sin x} \frac{1}{1 \sin x} = -2 \sec x \tan x$.
- 30. [4 pts] A triangle has angles with measures A, B, C across from sides of length a, b, c respectively. If a = 12, b = 5, and c = 10, find A, B, A and C.

- 1. (a) $D = [-4, 0] \cup (1, 4]$ and R = [-1, 4]
 - (b) 7
 - (c) undefined
 - (d) 0
 - (e) -4
 - (f) No. It does not satisfy the horizontal line test.

- 2. y = 4
- 3. (a) $4x^3 18x^2 + 38x 30$
 - (b) $4x^2 12x + 14$

- 4.
- 5. (a) x = 4/3, x = -5
 - (b) $x = 0, x = \frac{1 \pm \sqrt{5}}{2}$
 - (c) x < -1/2
- 6. $x = 8 \pm \sqrt{2}$
- 7. (a) y-int: (0,5); no x-int
 - (b) (1,2)

- 8. $3x^3 x + 1 + \frac{-5x+4}{2x^2-5}$
- 9. (a) $\frac{3x}{(x+2)(x-7)}$
 - (b) $\frac{2x}{1-x}$
 - (c) $\frac{x}{3x+4}$
- 10. x^2y
- 11. (a) $\mathbb{R}\setminus\{3\}$
 - (b) (3/2,0), (0,1)
 - (c) H.A.: y = 2; V.A.: x = 3

- (d)
- 12. x = 0
- 13. $\frac{41+19\sqrt{3}}{46}$
- 14. $(3, \infty)$
- 15. $4\sqrt{5}$
- 16. \$10,924.53
- 17. $\ln\left(\frac{xz^{2/3}}{y}\right)$
- 18. $2\log x \frac{3}{2}\log y \frac{1}{2}\log z 1$
- 19. 5.6439
- 20. (a) (0, -7)
 - (b) (-3,0)
 - (c) H.A.: y = -8; V.A.: none

- 21. (a) (0,-1)
 - (b) (-6,0)
 - (c) H.A.: none; V.A.: x = -9

- 22. (a) x = 8
 - (b) $x = \sqrt{e}$
- 23. 5.49m
- 24. $8\pi/9 \, \text{rad}$
- 25. 0
- 26. 131.81°, 228.19°
- 27. $5\pi/4 \, \text{rad}, \, 7\pi/4 \, \text{rad}$
- 28. $-4\sin(3x)$
- 30. $A \approx 100.77^{\circ}, B \approx 24.15^{\circ}$