1. (6 points) Let $f(x)$ be defined by the following graph.

(a) Evaluate $2 f(-1)$.
(b) Evaluate $(f \circ f)(3)$.
(c) Evaluate $f^{-1}(-2)$
(d) Find the range of $f(x)$.
(e) Sketch the graph of $-f(x)+2$.
2. (3 points) Let $f(x)=2 x+1$ and $g(x)=7 x-4$. Solve

$$
2 f(x) \leq 3 g(x)+x+1
$$

3. (7 points) Let $f(x)= \begin{cases}-x+2 & x<1 \\ 2 x-4 & x>1\end{cases}$
(a) Sketch the graph of $y=f(x)$.
(b) State the domain and range of $y=f(x)$.
(c) Evaluate
i. $(f \cdot f)(2)$.
ii. $(f \circ f)(2)$.
(d) Does f have an inverse? Why or why not?
4. (4 points) Factor each of the following expressions completely.
(a) $4 x^{2}(x+1)+16 x^{4}(x+1)$
(b) $x^{3}+2 x^{2}-25 x-50$
5. (5 points) Consider the function $f(x)=-2 x^{2}+12 x-10$.
(a) Put the function in vertex form by completing the square.
(b) Sketch the graph of f. Label the vertex, y-intercept and x-intercept(s) (if any exist).
6. (9 points) Solve each of the following equations for x.
(a) $4 x^{4}+7 x^{2}-2=0$
(b) $\frac{1}{x-6}+\frac{x}{x-2}=\frac{4}{x^{2}-8 x+12}$
(c) $\sqrt{-x+22}=x-2$
7. (2 points) Perform the long division clearly indicating the quotient and the remainder :

$$
\frac{x^{3}+5 x-1}{x+1}
$$

8. (7 points) Simplify the following expressions:
(a) $\frac{\frac{x}{10}+\frac{x}{x-5}}{\frac{x}{5}-\frac{5}{x}}$
(b) $\frac{x^{3}-8}{x-7} \div \frac{x^{2}+5 x-14}{x^{2}-49}$
9. (4 points) Given the rational function $f(x)=\frac{2 x+6}{x-2}$,
(a) find the coordinates of all intercepts,
(b) find all the asymptotes and
(c) sketch the graph.
10. (2 points) A man launches his boat from point A on a bank of a straight river, 3 km wide, and wants to reach point $B, 8 \mathrm{~km}$ downstream on the opposite bank. He chooses to row to some point P that is x kilometers downstream on the opposite bank and then walk towards point B. Find the total distance the man travels as a function of x.

11. (3 points) Simplify the radical expression $\frac{\sqrt[3]{27 x^{4}} \sqrt[6]{x^{19}}}{\sqrt{9 x^{7}}}$.
12. (3 points) Rationalize the denominator of $\frac{2+2 \sqrt{5}}{\sqrt{5}-1}$ and simplify.
13. (3 points) Find the domain of $f(x)=\frac{x-2}{1-x^{2}}-\frac{1}{\sqrt{3-x}}$.
14. (2 points) Find the future value of $\$ 25000$ invested at a rate of 8% for 15 years compounded monthly. (Answer to the nearest cent.)
15. (1 point) Compute $\log _{5}$ (10000). (Three decimal places.)
16. (4 points) Consider the function $f(x)=3 e^{x-2}+8$.
(a) Find the equation of any asymptote that $f(x)$ may have.
(b) Find a formula for $f^{-1}(x)$.
17. (5 points) For the function $f(x)=3-\log _{2}(x+2)$,
(a) find the coordinates of all intercepts
(b) find the equations of all asymptotes
(c) sketch a graph.
18. (2 points) Express $\ln \left(\frac{\sqrt{x}}{\sqrt[3]{e y^{2}}}\right)$ in terms of the simplest possible logarithms.
19. (3 points) Solve: $\log x-\log 2=1-\log (x-1)$
20. (3 points) Solve: $7^{x+4}=\frac{1}{3^{2-x}}$. Give an exact value.
21. (3 points) Let the angle θ in standard position whose terminal side contains the point $(2,-5)$. Find the exact values of
(a) $\sin \theta$
(b) $\sec \theta$
(c) $\cot \theta$
22. (2 points) With a calculator, find all angles between [$0^{\circ}, 360^{\circ}$) for which $\tan \theta=-2$. Round your answer to two decimal places.
23. (2 points) Find the exact value of $\sec \left(210^{\circ}\right)$.
24. (1 point) Convert 280° into radians.
25. (2 points) Without a calculator, find all angles between $[0,2 \pi)$ for which $\csc \theta=\sqrt{2}$. Give exact values in radians.
26. (3 points) A surveyor is standing in front of a 2 km wide straight river and starts looking directly at the opposite shore. If he turns 20° to the right, he notices a statue. If he then turn 10° further, he notices a second statue. Find the distance between the two statues?
27. (3 points) The following graph is either of the form $y=$ $a \sin (b x)$ or $y=a \cos (b x)$. Circle the correct form and find a and b.

28. (3 points) Simplify $\frac{\sin x}{\sec x-\cos x}$ completely.
29. (3 points) Find all angles in the triangle given below.

10

Answers

1.

(a) 0
(b) 1
(c) 2
(d) $(-\infty, 2)$
(e)

2. $x \geq \frac{13}{18}$
3.

(a)
(b) $D: \mathbf{R} \backslash\{1\}, R=(-2, \infty)$
(c) i. 0
ii . 2
(d) f doesn't have an inverse since it fails the Horizontal Line Test.
4.
(a) $4 x^{2}(x+1)\left(1+4 x^{2}\right)$
(b) $(x-5)(x+5)(x+2)$
5.
(a) $f(x)=-2(x-3)^{2}+8$

(b)
6.
(a) $-\frac{1}{2}, \frac{1}{2}$
(b) -1
(c) 6
7. $x^{2}-x+6-\frac{7}{x+1}$
8.
(a) $\frac{x^{2}}{2(x-5)^{2}}$
(b) $x^{2}+2 x+4$
9.
(a) • y-intercept : $(0,-3) \quad$ - x-intercept : $(-3,0)$

- Vertical asymptote : $x=2$
- Horizontal asymptote : $y=2$

(b)

10. $f(x)=\sqrt{x^{2}+9}+8-x$
11. x
12. $3+\sqrt{5}$
13. $(-\infty,-1) \cup(-1,1) \cup(1,3)$
14. $\$ 82673.04$
15. 5.723
16.

(a) $y=8$
(b) $f^{-1}(x)=\ln \left(\frac{x-8}{3}\right)+2$
17.
(a)

- y-intercept : $(0,2)$
- x-intercept : $(6,0)$
(b) Vertical asymptote : $x=-2$
(c)

18. $\frac{1}{2} \ln x-\frac{1}{3}-\frac{2}{3} \ln y$
19. 5
20. $-\frac{\ln \left(\frac{2401}{9}\right)}{\ln \left(\frac{7}{3}\right)}$
21.

(a) $-\frac{5}{\sqrt{29}}$
(b) $\frac{\sqrt{29}}{2}$
(c) $-\frac{2}{5}$
22. 116.57° and 296.57°
23. $-\frac{2}{\sqrt{3}}$
24. $\frac{14 \pi}{9}$
25. $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$
26. 0.427 km
27. $y=a \sin (b x)$ with $a=-3$ and $b=\frac{3}{2}$.
28. $\cot x$
29. $A=52.62^{\circ}, B=44.05^{\circ}$ and $C=83.33^{\circ}$

