- 1. Find an equation for the line passing through (-1,2) and perpendicular to 6-3x+4y=0.
- **2.** Find an equation of the horizontal line passing through (-1,4).
- **3.** Sketch a graph of the following function: $f(x) = \begin{cases} 1 3x & \text{if } x < 1 \\ 2x + 1 & \text{if } x \ge 1 \end{cases}$
- **4.** Simplify: $\left(\frac{3x^2}{u^{-3}}\right)^2 \left(\frac{2x^{-3}}{u}\right)^{-2}$. (Your answer should have only positive exponents.)
- **5.** Factor each polynomial as much as possible.
 - (a) $2x^2 2x 84$

(b) $64x^3 - 27$

(c) $3x^3 - 5x^2 - 12x + 20$

- **6.** Solve each of the following for x:
 - (a) -2(4-x) < 3 (2x-1) (b) $5x^2 8x + 3 = 0$ (c) $x^3 + 2x^2 2x = 0$

- 7. Solve by completing the square: $x^2 12x + 3 = 0$
- 8. Perform the long division: $\frac{2x^3 9x^2 + 7}{2x + 3}$
- **9.** Given the quadratic function $f(x) = 9 (x+2)^2$,
 - (a) Find all intercepts.
- (b) Find the vertex.
- (c) Sketch a graph of the function.

[6] **10.** Solve each of the following for x:

(a)
$$\frac{x}{x+24} - \frac{2}{x-8} = \frac{-x^2}{(x-8)(x+24)}$$

(b)
$$x + 2 + \sqrt{x + 22} = 0$$

[9] 11. Simplify the expressions below. (You may leave factored forms.)

(a)
$$\frac{25-x^2}{x^2+2x-15} \div \frac{x^2-10x+25}{x^{2015}-3x^{2014}}$$

(a)
$$\frac{25-x^2}{x^2+2x-15} \div \frac{x^2-10x+25}{x^{2015}-3x^{2014}}$$
 (b) $\frac{5}{x^2+11x-26} - \frac{3}{x^2+17x+52}$ (c) $\frac{\frac{5}{x+2}-\frac{x+2}{5}}{x-3}$

(c)
$$\frac{\frac{5}{x+2} - \frac{x+2}{5}}{x-3}$$

- [2] **12.** Given the rational function $f(x) = \frac{3x+6}{x^2-1}$,
 - (a) Find all vertical asymptotes (if any).
- (b) Find all horizontal asymptotes (if any). Do **not** sketch.
- [4] **13.** Given the rational function $f(x) = \frac{3x+6}{x-1}$,
 - (a) Find all intercepts.
- (b) Find all asymptotes.
- (c) Sketch a graph of the function.

- [5] **14.** Given $f(x) = \frac{3x+5}{x-2}$ and g(x) = 5-3x,
 - (a) Simplify $(f \circ g)(x)$.

- (b) Find a formula for $f^{-1}(x)$.
- [2] **15.** Consider the two points P(1, -7) and Q(5, 0)
 - (a) Find the distance from P to Q.
- (b) Find the midpoint of the segment joining P and Q.

Mathematics 201-015-50 Algebra & Trigonometry

- [2] **16.** Simplify: $5\sqrt{72} 7\sqrt{50}$
- [2] 17. Reduce the radical expression: $\sqrt[4]{7^6x^8y^{17}}$ (You may assume x and y are positive.)
- [2] **18.** Rationalize the denominator and simplify: $\frac{8}{\sqrt{7}-\sqrt{3}}$
- [1] **19.** Convert the following equation to logarithmic form: $5^{-2} = \frac{1}{25}$.
- [1] **20.** Harry places \$10,000 in an account that pays 3% interest compounded monthly. How much will be in the account after 4 years? (Give your answer to the nearest dollar.)
- [2] **21.** Express as a single logarithm: $3\ln(x) 2\ln(x+1) \ln y$.
- [3] **22.** Express in terms of the simplest possible logarithms: $\log \left(\frac{100\sqrt[3]{x^5}}{(x+6)^{10}} \right)$
- [1] **23.** Evaluate $\log_5(1000)$ to three decimal places.
- [3] **24.** Solve $64^x = 4 \cdot 8^{x-1}$
- [4] **25.** Given the function $y = 2^x 4$,
 - (a) Find all intercepts.
- (b) Find all asymptotes.
- (c) Sketch a graph of the function.
- [3] **26.** The graph of a function y = g(x) shown to the right corresponds to one of the formulas below. Circle the correct formula, and use it to find all intercepts and asymptotes.

(b)
$$y = -e^{x+2}$$

(c)
$$y = -\ln x + e^2$$

(d)
$$y = -\ln(x + e^2)$$

- [2] **27.** The terminal side of an angle θ in standard position contains the point (-1,6). Evaluate all six trig functions of θ . (Give exact values.)
- [2] **28.** Find all θ in the inteval $[0^{\circ}, 360^{\circ})$ that satisfy the equation: $\cos \theta = 1/3$. (Give two decimal places.)
- [1] **29.** Evaluate $\tan(5\pi/3)$. (Give an exact value.)
- [2] **30.** Find all θ in $[0, 2\pi)$ such that $\csc \theta = \sqrt{2}$. (Give exact values.)
- [3] **31.** From where you are standing, the top of a building is at an angle of 40°. You walk towards the building and the angle increases to 50°. If the building is 100m tall, how far did you walk? (To the nearest metre.)
- [3] **32.** For the function $f(x) = -5\cos(x/2)$,
 - (a) State the amplitude A.
- (b) State the period P.
- (c) Sketch a graph. (At least two cycles.)

[6] **33.** Prove the identities:

(a)
$$\frac{\csc x}{\csc x - \sin x} = \sec^2 x$$

(b) $\tan \theta + \cot \theta = \sec \theta \csc \theta$

END OF EXAM. ANSWERS ON NEXT PAGE.

Answers

1.
$$y = -\frac{4}{3}x + \frac{2}{3}$$

2.
$$y = 4$$

3.

4.
$$\frac{9x^{10}y^8}{4}$$

$$5(a) \ 2(x-7)(x+6)$$

5(b)
$$(4x-3)(16x^2+12x+9)$$

$$5(c) (3x-5)(x-2)(x+2)$$

6(b)
$$x = 3/5, x = 1$$

6(c)
$$x = 0, x = -1 \pm \sqrt{3}$$

7.
$$x = 6 \pm \sqrt{33}$$

8.
$$x^2 - 6x + 9 - \frac{20}{2x+3}$$

9(a) y-int:
$$(0,5)$$
; x-int's: $(-5,0)$, $(1,0)$.

9(b) Vertex:
$$(-2, 9)$$

9(c)

$$10(a) \ x = -3.$$

$$10(b) \ x = -6$$

11(a)
$$\frac{-x^{2011}}{x-5}$$

11(b)
$$\frac{2}{(x-2)(x+4)}$$

11(c)
$$\frac{-(x+7)}{5(x+2)}$$

$$12(a) \ y = 0$$

12(b)
$$x = \pm 1$$
.

13(a) y-int:
$$(0, -6)$$
; x-int: $(-2, 0)$.
13(b) V.A. at $x = 1$; H.A. at $y = 3$.
13(c)

14(a)
$$(f \circ g)(x) = \frac{20 - 9x}{3 - 3x}$$

14(b) $f^{-1}(x) = \frac{2x + 5}{x - 3}$

14(b)
$$f^{-1}(x) = \frac{2x+5}{x-3}$$

$$15(a) \sqrt{65}$$

$$15(b) (3, -7/2)$$

16.
$$-5\sqrt{2}$$

17.
$$7x^2y^4\sqrt[4]{49y}$$

18.
$$2(\sqrt{7}+\sqrt{3})$$

19.
$$\log_5(1/25) = -2$$

21.
$$\ln\left(\frac{x^3}{y(x+1)^2}\right)$$

22.
$$2 + \frac{5}{3} \log x - 10 \log(x+6)$$

$$23. \ 4.292$$

24.
$$x = -1/3$$

25(a) y-int:
$$(0, -3)$$
; x-int: $(2, 0)$.

25(b) H.A. at
$$y = -4$$
.

25(c)

26. Answer=(d).

y-int:
$$(0, -2)$$
, x-int: $(1 - e^2, 0)$

V.A. at
$$x = -e^2$$
.

27.
$$\sin \theta = 6/\sqrt{37}$$
 $\csc \theta = \sqrt{37}/6$
 $\cos \theta = -1/\sqrt{37}$ $\sec \theta = -\sqrt{37}$
 $\tan \theta = -6$ $\cot \theta = -1/6$

28.
$$\theta = 70.53^{\circ}, 289.47^{\circ}$$

29.
$$-\sqrt{3}$$

30.
$$\pi/4$$
, $3\pi/4$

$$32(a) A = 5$$

32(b)
$$P = 4\pi$$

$$33(a)$$

$$\frac{\csc x}{\csc x - \sin x} = \frac{\frac{1}{\sin x}}{\frac{1}{\sin x} - \sin x}$$

$$= \frac{\frac{1}{\sin x}}{\frac{1}{\sin x} - \sin x} \cdot \frac{\sin x}{\sin x}$$

$$= \frac{1}{1 - \sin^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

$$33(b) \tan \theta + \cot \theta = \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$
$$= \frac{\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \theta}{\sin \theta}$$
$$= \frac{\cos^2 \theta + \sin^2 \theta}{\cos \theta \sin \theta} = \frac{1}{\cos \theta \sin \theta}$$
$$= \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta} = \sec \theta \csc \theta.$$