- 1. [3 pts] Below is a list of "algebra rules". Some of them are true, some are false. Circle the true ones and cross the false ones. (Correct answer: 0.5 pts / Incorrect answer: -0.5 pts / No answer: 0 pts.)
 - $\bullet \ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c)$
 - $\bullet \ 2 \cdot 3^n = 6^n$

- $(a^m)^n = a^{mn}$
- $\bullet \ \sqrt{a^2 + b^2} = a + b$
- $\log_b(x+y) = \log_b x + \log_b y$
- 2. [6 pts] Let the functions f and g be given by the following graphs:

- (a) Evaluate the following:
 - i. f(0)
 - ii. g(f(4))
 - iii. $g^{-1}(2)$
 - iv. (f/g)(4)
- (b) Sketch the graph of -g(x+3).
- 3. [4 pts] Sketch the function $f(x) = \begin{cases} -2x+3 & \text{if } x \leq 0 \\ x+1 & \text{if } x > 0 \end{cases}$ and state its range.
- 4. [5 pts] Let A(-1,5) and B(3,-3) be two points on the plane. Find the:
 - (a) distance between A and B. (Give an exact simplified answer.)
 - (b) coordinates of the midpoint of the segment between A and B.
 - (c) equation of the line going through the points A and B.
 - (d) equation of the line going through A and perpendicular to y = 2x + 3.
 - (e) equation of the vertical line going through A.
- 5. [1 pt] Solve for x: $-8x + 5 \le 7 3(x 1)$.
- 6. [2 pts] Simplify leaving only positive exponents: $\left(\frac{14a^3bc^3}{6a^{-1}(b^2c^{-2})^3}\right)^{-1}$.
- 7. [6 pts] Factor completely:

- (a) $27x^4 8x$
- (b) $5x^3 + x^2 45x 9$
- (c) $6x^2 x 15$
- 8. [2 pt] Solve $x^2 14x + 50 = 0$ by completing the square. (Simplify as much as possible.)
- 9. [3 pts] Solve $-4x^2 + 4x + 7 = 0$ with the quadratic formula. (Simplify as much as possible.)
- 10. **[4 pts]** Given $f(x) = x^2 + 6x + 5$:
 - (a) Find the y-intercept.
 - (b) Find the x-intercept(s), if any.
 - (c) Find the coordinates of the vertex.
 - (d) Sketch the graph of y = f(x).
- 11. [1 pt] Use polynomial long division to divide: $\frac{3x^3 2x^2 2x + 1}{x^2 2}.$
- 12. [6 pts] Simplify:
 - (a) $\frac{x^2-4}{x^3+3x^2} \div \frac{x^2-3x+2}{x^2+3x}$
 - (b) $\frac{x}{x-1} + \frac{3}{x-2} + \frac{1}{x^2 3x + 2}$
 - (c) $\frac{\frac{4}{x}-1}{1-\frac{5}{x-1}}$
- 13. [15 pts] Solve the following equations:
 - (a) 14 9(5x 1) = 11x
 - (b) $x^4 + 3x^2 10 = 0$
 - (c) $\frac{1}{2} \frac{2}{x^2 1} = \frac{1}{x + 1}$
 - (d) $\log_2(x) + \log_2(x-2) = 3$
 - (e) $\sqrt{2x-3} = x-3$
- 14. [2 pts] Given $f(x) = \frac{x+2}{2x-5}$, find a formula for the inverse $f^{-1}(x)$.
- 15. [2 pt] Find the x-intercept, y-intercept and asymptotes of $f(x) = \frac{2x-3}{6-x}$ and sketch its graph.
- 16. [2 pts] Simplify the following radical expressions. For simplicity, you can assume that all variables are positive.
 - (a) $\sqrt[3]{48x^4y^2} \sqrt[3]{\frac{x^2}{6y}}$
 - (b) $(\sqrt{6} + 2\sqrt{3} 1)(\sqrt{6} + 2\sqrt{3} + 1)$

- 17. [2 pts] Rationalize the numerator of $\frac{3-\sqrt{7-x}}{x+2}$ and simplify.
- 18. [1 pt] Rationalize the denominator of $\frac{2}{\sqrt[3]{4x}}$ and simplify.
- 19. [3 pts] Find the domain of the following functions.

(a)
$$f(x) = \frac{x(x-2)}{(x+3)(x-6)}$$

(b)
$$g(x) = \frac{1 - \sqrt{1 - x}}{x + 2}$$

- 20. [1 pt] Use a calculator to evaluate $\log_7(2016)$ to 3 decimal places.
- 21. [3 pts] You invest \$ 2,500 in a "High Interest" savings account that pays an annual interest rate of 0.550% compounded daily. Assuming there are 365 days in each year (no leap years), how much will you have after 7 years? (Give you answer to the nearest cent.)
- 22. [2 pts] Express $\log \left(\frac{\sqrt{x^2 + 3}}{100x^{2016}} \right)$ in terms of the simplest possible logarithms.
- 23. [2 pts] Given $3^{2-x} = \frac{27^x}{3}$, find the exact value of x.
- 24. [2 pts] Let $f(x) = \log_2(x+8)$. Sketch the graph of f and indicate all intercepts and asymptotes. State the domain and range of f.
- 25. [3 pts] Let θ be the angle in standard position with terminal side containing the point (-1,4). Find the exact value of:
 - (a) $\cos \theta$
 - (b) $\csc \theta$
 - (c) $\cot \theta$
- 26. [2 pts] Find the exact value of two angles θ in the interval $[0, 2\pi)$ with $\cos \theta = -\frac{1}{2}$.
- 27. [2 pts] Prove the identities:

(a)
$$(1 - \cos^2 x)(1 + \cot^2 x) = 1$$

(b)
$$\frac{\tan x}{\sec x - 1} = \frac{1 + \cos x}{\sin x}$$

- 28. [3 pts] To measure the height of a statue standing on a base, two sightings 100 meters from the bottom of the base are taken. If the angle of elevation to the bottom of the statue is 5° and the angle of elevation to the top of the statue is 15°, what is the height of the statue?
- 29. [1 pt] Convert $\frac{7\pi}{6}$ rad to degrees.
- 30. [2 pts] Consider the angle $\theta = -\frac{7\pi}{6}$ rad.
 - (a) Sketch θ and state the reference angle.
 - (b) Without using a calculator find the exact value of $\cos \theta$.

- 31. [2 pts] Let $y = -\sin(2\pi x)$.
 - (a) Find the amplitude and period.
 - (b) Graph two cycles of this function.
- 32. [2 pts] For the triangle below, find the angle θ and the length a (Round your answer to two decimal places).

33. [2 pts] For the triangle below, find the angle θ and the length c. (Round your answers to two decimal places).

Answers _

1.

- TRUE
- TRUE
- FALSE
- FALSE
- FALSE
- FALSE
- 2. (a) i. 1 ii. 1
 - iii. 0
 - iv. undefined

3. range = $(1, \infty)$

- 4. (a) $4\sqrt{5}$
 - (b) (1,1)
 - (c) y = -2x + 3
 - (d) $-\frac{1}{2}x + \frac{9}{2}$
 - (e) x = -1
- 5. $x \ge -1$
- 6. $\frac{3b^5}{7a^4c^9}$
- 7. (a) $x(3x-2)(9x^2+6x+4)$
 - (b) (x-3)(x+3)(5x+1)
 - (c) (2x+3)(3x-5)
- 8. no solution

9.
$$\frac{-1 \pm 2\sqrt{2}}{2}$$

- 10. (a) (0,5)
 - (b) (-5,0), (-1,0)
 - (c) (-3, -4)

E E

- 11. $3x 2 + \frac{4x 3}{x^2 2}$
- 12. (a) $\frac{x+2}{x(x-1)}$
 - (b) $\frac{x+2}{x-2}$
 - (c) $\frac{(4-x)(x-1)}{x(x-6)}$
- 13. (a) $x = \frac{23}{56}$
 - (b) $x = \pm \sqrt{2}$
 - (c) x = 3
 - (d) x = 4
 - (e) x = 6

14.
$$f^{-1}(x) = \frac{5x+2}{2x-1}$$

- 15. x-int.: (3/2, 0)
 - y-int.: (0, -1/2)
 - hor. asymp.: y = -2
 - vert. asymp.: x = 6

- 16. (a) $2x^2 \sqrt[3]{y}$
 - (b) $17 + 12\sqrt{2}$

17.
$$\frac{1}{3+\sqrt{7-x}}$$

- 18. $\frac{\sqrt[3]{2x^2}}{r}$
- 19. (a) $\mathbb{R} \setminus \{-3, 6\}$
 - (b) $(-\infty, -2) \cup (-2, 1]$
- 20. 3.910

- 21. \$ 2,598.13
- 22. $\frac{1}{2}\log(x^2+3) 2 2016\log x$
- 23. x = 3/4

- 24.
 - domain = $(-8, \infty)$
 - range = $(-\infty, \infty)$
- 25. (a) $-1/\sqrt{17}$
 - (b) $\sqrt{17}/4$
 - (c) -1/4
- 26. $\theta_1 = 2\pi/3$, $\theta_2 = 4\pi/3$
- 27. (a) LHS = $(1 \cos^2 x) \left(1 + \frac{\cos^2 x}{\sin^2 x} \right)$ $= (\sin^2 x) \left(\frac{\sin^2 x + \cos^2 x}{\sin^2 x} \right)$ $= \sin^2 x \cdot \frac{1}{\sin^2 x} = \text{RHS}$
 - (b) LHS = $\frac{\frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x} 1}$ $= \frac{\frac{\sin x}{\cos x}}{\frac{1 \cos x}{\cos x}}$ $= \frac{\sin x}{\cos x} \cdot \frac{\cos x}{1 \cos x} = \frac{\sin x}{1 \cos x}$ $= \frac{\sin x \cdot (1 + \cos x)}{(1 \cos x) \cdot (1 + \cos x)}$ $= \frac{\sin x \cdot (1 + \cos x)}{1 \cos^2 x}$ $= \frac{\sin x \cdot (1 + \cos x)}{\sin^2 x} = \text{RHS}$
- 28. 18.046 m
- 29. 210°
- 30. (a) $\theta_R = \pi/6$
 - (b) $-\sqrt{3}/2$
- 31. (a) A = 1, P = 1

- 32. $\theta=40^{\circ}$, $a\approx3.856$
- 33. $c \approx 4.514$, $\theta \approx 85.408^{\circ}$