[2] 1. Consider the two points $A(-1,2)$ and $B(4,-4)$, and let L be the line that passes through A and B.
(a) Find the distance from A to B.
(b) Find an equation for the line L.
[6] 2. Suppose $y=f(x)$ is given by the following graph:

(a) State the domain and range of f.
(b) Evaluate: $f(f(3))$
(c) Evaluate: $f^{-1}(3)$
(d) Evaluate: $\left(f^{-1} \circ f\right)(7 / 2)$
(e) Sketch a graph of $y=-\frac{1}{2} f(x+2)$.
[3] 3. Sketch a graph of the function.
$f(x)= \begin{cases}1-3 x & \text { if } x \leqslant 2 \\ x^{2} & \text { if } x>2\end{cases}$
[4] 4. Factor completely.
(a) $6 x^{2}-13 x+6$
(b) $x^{5}+64 x^{2}$
5. Solve each of the following for x.
(a) $7-4 x \leqslant x-3(x-1)$
[3] (b) $4 x^{3}-4 x^{2}-9 x+9=0$
[4]
(c) $\frac{-1}{x-3}=\frac{10}{x^{2}+3 x}+\frac{x-17}{x^{2}-9}$
[3] (d) $x-\sqrt{7 x+30}=0$
[2] 6. Solve by completing the square: $x^{2}=200 x-9998$
[3] 7. Given the quadratic function $f(x)=x^{2}+6 x+10$,
(a) Find all intercepts;
(b) Find the vertex;
(c) Sketch a graph of the function.
[3] 8. Use polynomial long division to express $\frac{2 x^{4}-3 x^{3}-7}{x^{2}-2}$ in the form $Q(x)+\frac{R(x)}{D(x)}$, where the degree of $R(x)$ is less than the degree of $D(x)$.
9. Let $f(x)=\frac{x^{2}}{x-8}$ and $g(x)=\frac{x}{x+1}$.
[1] (a) Simplify $(f / g)(x)$.
[2] (b) Simplify $(f-g)(x)$.
[3] (c) Simplify $g(f(x))$.
[2] (d) Find and simplify $g^{-1}(x)$.
[5] 10. Given the rational function $R(x)=\frac{4 x^{2}-4}{x^{2}-4}$,
(a) State the domain of $R(x)$;
(b) Find all intercepts;
(c) Find the equations of all asymptotes;
(d) Sketch a graph of the function.
[3] 11. Reduce the radical expression $\frac{\sqrt[3]{32 x^{10} y^{7}}}{\sqrt[3]{2 x^{2} y^{-2}}}$.
[2] 12. Simplify $(\sqrt{\sqrt[3]{x} \sqrt[5]{x}})^{45}$.
[5] 13. Let $f(x)=\frac{5-\sqrt{x+1}}{24-x}$.
(a) State the domain of f. (b) Rationalize the numerator and simplify $f(x)$.
[2] 14. An investment pays 4% annually compounded every 6 months. If $\$ 5000$ is invested today, what will be the future value 10 years from now? (Answer to the nearest cent.)
[4] 15. Given the function $g(x)=3 \cdot(1 / 3)^{x}-9$,
(a) Find all intercepts;
(b) Find the equations of all asymptotes;
(c) Sketch a graph of the function.
[2] 16. Express as a single logarithm and simplify: $\log \left(x^{3}-x^{2}\right)-2 \log x$
[3] 17. Express in terms of the simplest possible logarithms: $\ln \left(\frac{2^{7 x}}{x \sqrt{x^{2}+x}}\right)$
[2] 18. Evaluate $\log _{5}\left(4^{1000}\right)$ to two decimal places. (Hint: 4^{1000} is too big for your calculator to compute.)
[2] 19. Suppose the graph of the function $f(x)=\ln (x+b)+c$ has a vertical asymptote at $x=\frac{-1}{e}$ and a y-intercept at $(0,6)$. Find b and c.
[3] 20. Solve: $\log _{2}(x-4)=5-\log _{2} x$
[3] 21. Solve: $3\left(5^{x}\right)=2^{(2 x+3)}$ (Give a simplified exact value.)
[2] 22. The terminal side of an angle θ in standard position contains the point $(5,-10)$. Evaluate all six trig functions of θ. (Give simplified exact values.)
[2] 23. Find all θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that satisfy the equation: $\sin \theta=3 / 5$. (Give two decimal places.)
[2] 24. Find all θ in $[0,2 \pi)$ such that $\cot \theta=0$.
[2] 25. Find all θ in $[0,2 \pi)$ such that $\sec \theta=2 / \sqrt{3}$.
[3] 26. On a beautiful summer morning, the sun is rising at a rate of 15° per hour. When the sun is 20° above the horizon, the shadow of a flagpole is 30 metres long. How long will the shadow be 2 hours later? (Answer in metres with two decimal places.)
[3] 27. The graph below is of a function of one of the two forms $y=a \sin (b x)$ or $y=a \cos (b x)$. State which one it is, and find the values of a and b.

[2] 28. Simplify as much as possible: $\frac{\sec x-\cos x}{\sin x}$
[2] 29. Prove the identity: $\frac{\tan x}{\tan x+1}=\frac{1}{\cot x+1}$
[4] 30. A triangle has sides of length a, b, c across from angles of measure A, B, C respectively. If $a=10, b=7$ and $c=6$, find A, B, and C. (Give two decimal places.)

Answers:
1(a) $\sqrt{61}$
1(b) $y=\frac{-6}{5} x+\frac{4}{5}$
2(a) $D=(1,5], R=(2,6]$
2(b) 5
2(c) 2
2(d) $7 / 2$

2(e) | y | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1 | 1 | 1 | 2 | 3 | 4 | |
| | | | | | | | |

3.

4(a) $(3 x-2)(2 x-3)$
4(b) $x^{2}(x+4)\left(x^{2}-4 x+16\right)$
5(a) $x \geqslant 2$
5(b) $x=1, x= \pm 3 / 2$
5(c) $x=5$
5(d) $x=10$
6. $x=100 \pm \sqrt{2}$

7 (a) y-int: $(0,10)$;
x-int's: none.
7 (b) Vertex: $(-3,1)$.
7(c)

8. $2 x^{2}-3 x+4+\frac{-6 x+1}{x^{2}-2}$

9(a) $\frac{x(x+1)}{x-8}$
$9(\mathrm{~b}) \frac{x\left(x^{2}+8\right)}{(x-8)(x+1)}$
9 (c) $\frac{x^{2}}{x^{2}+x-8}$
9(d) $\frac{-x}{x-1}$
10(a) $D=\mathbb{R} \backslash\{-2,2\}$
10(b) y-int: $(0,1)$;
x-int's: $(-1,0),(1,0)$.
10(c) H.A. at $y=4$.
V.A.'s at $x=-2, x=2$.

10(d)

11. $2 x^{2} y^{3} \sqrt[3]{2 x^{2}}$
12. x^{12}

13 (a) $[-1,24) \cup(24, \infty)$
13(b) $f(x)=\frac{1}{5+\sqrt{x+1}}$
14. $\$ 7429.74$

15(a) y-int: $(0,-6) ; x$-int: $(-1,0)$
15(b) HA at $y=-9$
15(c)

16. $\log (x-1)$
17. $7 x \ln 2-\frac{3}{2} \ln x-\frac{1}{2} \ln (x+1)$
18. 861.35
19. $b=1 / e, c=7$
20. $x=8$.
21. $x=\frac{\ln \left(\frac{8}{3}\right)}{\ln \left(\frac{5}{4}\right)}$
22. $\sin \theta=-2 / \sqrt{5} \quad \csc \theta=-\sqrt{5} / 2$
$\cos \theta=1 / \sqrt{5} \quad \sec \theta=\sqrt{5}$
$\tan \theta=-2 \quad \cot \theta=-1 / 2$
23. $\theta=36.87^{\circ}, 143.13^{\circ}$
24. $\theta=\pi / 2,3 \pi / 2$
25. $\theta=\pi / 6,11 \pi / 6$
26. 9.16 m
27. $y=-7 \sin \left(\frac{x}{4}\right)$. (i.e. $a=-7, b=1 / 4$.)
28. $\tan x$
29. Right Side $=\frac{1}{\frac{1}{\tan x}+1} \cdot \frac{\tan x}{\tan x}=$ Left Side.
30. $A \approx 100.29^{\circ}, B \approx 43.53^{\circ}, C \approx 36.18^{\circ}$.

