Mathematics 201-015-50 Algebra & Trigonometry

- [2] 1. Consider the two points A(-1,2) and B(4,-4), and let L be the line that passes through A and B.
 - (a) Find the distance from A to B.
 - (b) Find an equation for the line L.
- [6] **2.** Suppose y = f(x) is given by the following graph:

- (a) State the domain and range of f.
- (b) Evaluate: f(f(3))
- (c) Evaluate: $f^{-1}(3)$
- (d) Evaluate: $(f^{-1} \circ f)(7/2)$
- (e) Sketch a graph of $y = -\frac{1}{2}f(x+2)$.
- [3] **3.** Sketch a graph of the function.

$$f(x) = \begin{cases} 1 - 3x & \text{if } x \le 2\\ x^2 & \text{if } x > 2 \end{cases}$$

- [4] **4.** Factor completely.
 - (a) $6x^2 13x + 6$
- (b) $x^5 + 64x^2$
- **5.** Solve each of the following for x.
- [1] (a) $7 4x \le x 3(x 1)$
- [3] (b) $4x^3 4x^2 9x + 9 = 0$
- [4] (c) $\frac{-1}{x-3} = \frac{10}{x^2+3x} + \frac{x-17}{x^2-9}$
- [3] (d) $x \sqrt{7x + 30} = 0$
- [2] **6.** Solve by completing the square: $x^2 = 200x 9998$
- [3] 7. Given the quadratic function $f(x) = x^2 + 6x + 10$,
 - (a) Find all intercepts;
- (b) Find the vertex;
- (c) Sketch a graph of the function.
- [3] **8.** Use polynomial long division to express $\frac{2x^4 3x^3 7}{x^2 2}$ in the form $Q(x) + \frac{R(x)}{D(x)}$, where the degree of R(x) is less than the degree of D(x).
 - **9.** Let $f(x) = \frac{x^2}{x-8}$ and $g(x) = \frac{x}{x+1}$.
- [1] (a) Simplify (f/g)(x).
- [2] (b) Simplify (f-g)(x).
- [3] (c) Simplify g(f(x)).
- [2] (d) Find and simplify $g^{-1}(x)$.
- [5] **10.** Given the rational function $R(x) = \frac{4x^2 4}{x^2 4}$,
 - (a) State the domain of R(x);
 - (b) Find all intercepts;
 - (c) Find the equations of all asymptotes;
 - (d) Sketch a graph of the function.

- [3] **11.** Reduce the radical expression $\frac{\sqrt[3]{32x^{10}y^7}}{\sqrt[3]{2x^2y^{-2}}}$.
- [2] **12.** Simplify $\left(\sqrt{\sqrt[3]{x}\sqrt[5]{x}}\right)^{45}$.
- [5] **13.** Let $f(x) = \frac{5 \sqrt{x+1}}{24 x}$.
 - (a) State the domain of f. (b) Rationalize the numerator and simplify f(x).
- [2] **14.** An investment pays 4% annually compounded every 6 months. If \$5000 is invested today, what will be the future value 10 years from now? (Answer to the nearest cent.)
- [4] **15.** Given the function $g(x) = 3 \cdot (1/3)^x 9$, (a) Find all intercepts; (b) Find the equations of all asymptotes; (c) Sketch a graph of the function.
- [2] **16.** Express as a single logarithm and simplify: $\log(x^3 x^2) 2\log x$
- [3] 17. Express in terms of the simplest possible logarithms: $\ln\left(\frac{2^{7x}}{x\sqrt{x^2+x}}\right)$
- [2] 18. Evaluate $\log_5(4^{1000})$ to two decimal places. (Hint: 4^{1000} is too big for your calculator to compute.)
- [2] **19.** Suppose the graph of the function $f(x) = \ln(x+b) + c$ has a vertical asymptote at $x = \frac{-1}{e}$ and a y-intercept at (0,6). Find b and c.
- [3] **20.** Solve: $\log_2(x-4) = 5 \log_2 x$
- [3] **21.** Solve: $3(5^x) = 2^{(2x+3)}$ (Give a simplified exact value.)
- [2] **22.** The terminal side of an angle θ in standard position contains the point (5, -10). Evaluate all six trig functions of θ . (Give simplified exact values.)
- [2] **23.** Find all θ in the interval $[0^{\circ}, 360^{\circ})$ that satisfy the equation: $\sin \theta = 3/5$. (Give two decimal places.)
- [2] **24.** Find all θ in $[0, 2\pi)$ such that $\cot \theta = 0$.
- [2] **25.** Find all θ in $[0, 2\pi)$ such that $\sec \theta = 2/\sqrt{3}$.
- [3] **26.** On a beautiful summer morning, the sun is rising at a rate of 15° per hour. When the sun is 20° above the horizon, the shadow of a flagpole is 30 metres long. How long will the shadow be 2 hours later? (Answer in metres with two decimal places.)
- [3] **27.** The graph below is of a function of one of the two forms $y = a \sin(bx)$ or $y = a \cos(bx)$. State which one it is, and find the values of a and b.

- [2] **28.** Simplify as much as possible: $\frac{\sec x \cos x}{\cdot}$
- [2] **29.** Prove the identity: $\frac{\tan x}{\tan x + 1} = \frac{1}{\cot x + 1}$
- [4] **30.** A triangle has sides of length a, b, c across from angles of measure A, B, C respectively. If a = 10, b = 7 and c = 6, find A, B, and C. (Give two decimal places.)

Answers:

- $1(a) \sqrt{61}$
- 1(b) $y = \frac{-6}{5}x + \frac{4}{5}$ 2(a) D = (1, 5], R = (2, 6]
- 2(b) 5
- 2(c) 2
- 2(d) 7/2

2(e)1 2 3 4

- 4(a) (3x-2)(2x-3)
- 4(b) $x^2(x+4)(x^2-4x+16)$
- $5(a) \ x \ge 2$
- 5(b) $x = 1, x = \pm 3/2$
- 5(c) x = 5
- 5(d) x = 10
- 6. $x = 100 \pm \sqrt{2}$

- 7(a) y-int: (0,10);
- x-int's: none.
- 7(b) Vertex: (-3, 1).

7(c)-6 -5 -4 -3 -2 -1

- 8. $2x^2 3x + 4 + \frac{-6x + 1}{x^2 2}$
- 9(a) $\frac{x(x+1)}{x-8}$ 9(b) $\frac{x(x^2+8)}{(x-8)(x+1)}$ 9(c) $\frac{x^2}{x^2+x-8}$ 9(d) $\frac{-x}{x-1}$

- $10(a) D = \mathbb{R} \setminus \{-2, 2\}$
- 10(b) y-int: (0,1);
- x-int's: (-1,0),(1,0).
- 10(c) H.A. at y = 4.
- V.A.'s at x = -2, x = 2.
- 10(d)

- 11. $2x^2y^3\sqrt[3]{2x^2}$
- 12. x^{12}
- 13(a) $[-1,24) \cup (24,\infty)$ 13(b) $f(x) = \frac{1}{5 + \sqrt{x+1}}$
- 14. \$7429.74
- 15(a) y-int: (0,-6); x-int: (-1,0)
- 15(b) HA at y = -9

15(c)

- 16. $\log(x-1)$
- 17. $7x \ln 2 \frac{3}{2} \ln x \frac{1}{2} \ln(x+1)$
- 18. 861.35
- 19. b = 1/e, c = 7
- 20. x = 8.

22. $\sin \theta = -2/\sqrt{5}$ $\csc \theta = -\sqrt{5}/2$ $\sec \theta = \sqrt{5}$ $\cos \theta = 1/\sqrt{5}$ $\cot \theta = -1/2$ $\tan \theta = -2$

- 23. $\theta = 36.87^{\circ}, 143.13^{\circ}$
- 24. $\theta = \pi/2, 3\pi/2$
- 25. $\theta = \pi/6, 11\pi/6$
- 26. 9.16m
- 27. $y = -7\sin\left(\frac{x}{4}\right)$. (i.e. a = -7, b = 1/4.)
- 29. Right Side= $\frac{1}{\frac{1}{\tan x} + 1} \cdot \frac{\tan x}{\tan x}$ =Left Side.
- 30. $A \approx 100.29^{\circ}, B \approx 43.53^{\circ}, C \approx 36.18^{\circ}.$