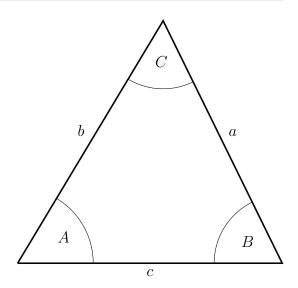
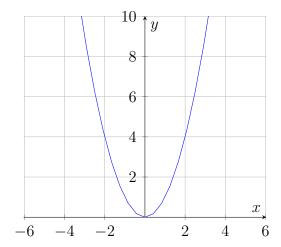

1. (4 points) Consider two functions: a function f defined by the graph of y = f(x) shown below and a function g defined by the formula g(x) = 3x + 1.

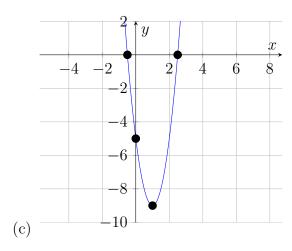


Evaluate each of the following, or state that it is undefined.

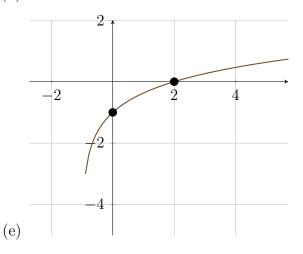
- (a) f(4)
- (b) $f^{-1}(7)$
- (c) $(g \circ f)(2)$
- (d) (g/f)(0)
- 2. (2 points) Sketch an example of a function that does not have an inverse function.
- **3.** (2 points) Let g be a function defined by g(x) = 2x 1. Evaluate $g^{-1}(5)$.
- **4.** (2 points) Solve the equation $x^3 + 4x^2 9x 36 = 0$.
- **5.** (3 points) Use polynomial long division to divide $(x^3 + 2x^2 + 2x) \div (x^2 + 2)$ and express your answer in the form $Q(x) + \frac{R(x)}{D(x)}$.
- **6.** (4 points) Given the quadratic function $f(x) = 4x^2 8x 5$,
 - (a) Find the coordinates of all intercepts.
 - (b) Find the coordinates of the vertex.
 - (c) Sketch a graph of the function using the information from the previous parts.


7. (3 points) Let
$$f(x) = \frac{(x+5)(x-3)}{(x-4)(x+2)}$$
 and $g(x) = \frac{x(x-3)}{x(x-2)(x+2)}$.

- (a) Find the domain of $\left(\frac{f}{g}\right)(x)$.
- (b) Simplify $\left(\frac{f}{g}\right)(x)$ as much as possible.
- **8.** (4 points) Solve the equation $\frac{2x^2}{(x+1)(x+5)} \frac{2x^2}{(x-5)(x+5)} = \frac{3x}{(x-5)(x+1)}.$
- **9.** (3 points) Solve the rational inequality $\frac{x}{(x-1)(2-x)} \ge 0$.
- 10. (3 points) Simplify $\frac{\sqrt[3]{125x^9y^6}}{\sqrt{(25x^2y^8)}}$. You may assume that x and y are positive. All exponents in your answer should be left as positive.
- 11. (3 points) Find the domain of $f(x) = \sqrt{(x-2)(x+3)}$.
- **12.** (4 points) Solve the equation $\log_3(x+4) + \log_3(x) = \log_3(x+2) + 1$.
- 13. (4 points) Solve the equation $7^{4x+1} = 5^{1-x}$ and round your answer to three decimal places.
- **14.** (6 points) Let $g(x) = \log_3(x+1) 1$.
 - (a) State the domain of g(x) as an interval.
 - (b) Find all intercepts.
 - (c) Find the equation of any asymptote that g(x) may have.
 - (d) Sketch the graph y = g(x). Indicate all intercepts and asymptotes that g(x) may have.
- **15.** (3 points) Simplify $\frac{\sec \theta \sin \theta \tan \theta}{\cos \theta}.$
- **16.** (4 points) Find all angles θ in the interval $[0^{\circ}, 360^{\circ})$, in degrees, where $\cot \theta = \frac{1}{3}$. Round all your answers to two decimal places.
- 17. (4 points) An angle θ is in the third quadrant and satisfies $\cos \theta = -\frac{2}{3}$. Find the **exact value** of $\tan \theta$ without explicitly finding θ .
- 18. (4 points) The angle of elevation to the top of a lighthouse is 45° from a point on the ground. At another point 150m closer to the lighthouse, the angle becomes 60°. How tall is the lighthouse? Round your answer to a whole number.
- 19. (3 points) Consider a triangle with angles of measure A, B and C, across from sides of length a, b and c respectively. If $A=60^{\circ}$, side a is of length 11cm and side b is of length 10cm, find the angle B in degrees. Round your answer to two decimal places.



Answers


- 1. (a) 5
 - (b) 5
 - (c) 10
 - (d) Undefined

- 3. 3
- $4. \pm 3, -4$
- $5. \ x+2-\frac{4}{x^2+2}$
- 6. (a) (0,-5), (5/2,0), (-1/2,0)
 - (b) (1, -9)

- 7. (a) $\mathbb{R}\setminus\{\pm 2, 0, 3, 4\}$
 - (b) $\frac{(x+5)(x-2)}{(x-4)}$
- 8. x = 0
- 9. $(-\infty, 0] \cup (1, 2)$
- 10. $\frac{x^2}{y^2}$
- 11. $(-\infty, -3] \cup [2, \infty)$
- 12. 2
- 13. -0.036
- 14. (a) $(-1, \infty)$
 - (b) (0,-1), (2,0)
 - (c) x = -1
 - (d)

15. 1

- $16.\ 71.57^{\circ},\ 251.57^{\circ}$
- 17. $\frac{\sqrt{5}}{2}$
- $18. \ 355 m$
- 19. 51.93°