Question 1. - Use polynomial long division to divide:

$$
\left(50 x^{3}-38 x\right) \div(10 x+6)
$$

(Express your answer in the form $Q(x)+\frac{R(x)}{D(x)}$.)
Question 2. - Solve the inequality for $x: x(x+1)(2 x-1)^{2}>0$.
(Express your answer in interval notation.)
Question 3. - Given the quadratic function: $f(x)=-2 x^{2}-2 x+4$:
a. Find the coordinates of all axis intercepts.
b. Find the coordinates of the vertex.
c. Sketch a graph of the function using the information from the previous parts.
Question 4. - Solve the equation for x :

$$
\frac{-8}{x^{2}+2 x-15}+\frac{1}{x-3}=\frac{6}{x^{2}+5 x}
$$

Question 5. - Given $f(x)=\frac{2 x+7}{x-9}$, find $f^{-1}(x)$.
Question 6. - Solve the equation for $x: \sqrt{x^{2}+3}+3=x$.
Question 7. - Simplify the following expression as much as possible. Assume all variables are positive. Your final answer should not have any negative exponents.

$$
\frac{9^{-\frac{1}{2}}\left(x^{5} y^{9}\right)^{-\frac{1}{3}}}{\sqrt{36 x^{\frac{2}{3}} y^{6}}}
$$

Question 8. - Let $f(x)=4-2^{x+1}$.
a. Identify all intercepts and asymptotes.
b. Sketch the graph $y=f(x)$.
c. State the domain and range of $f(x)$.

Question 9. - \$5000 is invested today at a 2.4% yearly interest rate. What will be the value of the investment 10 years from now if the interest is compounded quarterly? Give your answers to the nearest cent.

Question 10. - Evaluate the following expression in simplified exact form, without using decimals:

$$
\ln \left(\frac{1}{\sqrt[7]{e^{2}}}\right)
$$

Question 11. - Express as a single logarithm and simplify:

$$
\frac{1}{2} \ln (x y)-\frac{3}{2} \ln (y z)-\frac{5}{2} \ln (x z) .
$$

Question 12. - Solve for $x: \log (x+5)+\log (x+1)=\log \left(x^{2}+2 x+21\right)$.
Question 13. - Solve for $x: 3^{4 x}=7^{2-x}$.
Express your answer in the form $x=\frac{\ln (A)}{\ln (B)}$.
Question 14. - Given that θ is an acute angle and $\sin (\theta)=\frac{5}{13}$, find the exact values of the five remaining trigonometric functions.
Question 15. - If $\cos (\theta)=\frac{2}{3}$ and $\cot (\theta)<0$, give the exact values of $\sin (\theta)$ and $\tan (\theta)$.
Question 16. - Find the exact values of all angles θ in the interval $[0,2 \pi)$ such that $\tan \theta=-\sqrt{3}$.
Question 17. - Prove the identity: $\cot x=\frac{\sin x}{\sec x-\cos x}$.
Question 18. - A triangle has sides of length $a=5, b=7$, and $c=3$ across from angles of measure A, B, and C respectively. Which angle is the smallest? Find its measure accurate to two decimal places.

Question 19. - The angles of elevation to an airplane are measured from the top and the base of a building that is 20 m tall. The angle from the top of the building is 38° and the angle from the base of the building is 40°. Find the altitude of the airplane. Round your answer to the nearest metre.

Solution to question 1. - Cancelling the common factor before dividing gives

$$
\frac{50 x^{3}-38 x}{10 x+6}=\frac{25 x^{3}-19 x}{5 x+3}=5 x^{2}-3 x-2+\frac{6}{5 x+3}
$$

Solution to question 2. - The sign of the left side (which changes at -1 and 0 , but not at $\frac{1}{2}$) is displayed below.

So the solution of the inequality is $(-\infty,-1) \cup\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$.
Solution to question 3. - a. $f(x)=-2 x^{2}-2 x+4=-2\left(x^{2}+x-2\right)=$ $-2(x+2)(x-1)$, so the y intercept is $(0,4)$ and the x intercepts are $(-2,0)$ and $(1,0)$.
b. The x coordinate of the vertex is $-\frac{1}{2}$ and its y coordinate is $\frac{9}{2}$.
c. The graph is sketched below.

Solution to question 4. - Clearing denominators gives $-8 x+x^{2}+$ $5 x=6 x-18$, i.e., $x^{2}-9 x+18=0$, or $(x-3)(x-6)=0$, so the only solution is 6 (the left side of the equation is undefined if x is 3).
Solution to question 5. - The equation $y=\frac{2 x+7}{x-9}$ is equivalent to $x \neq 9$ and $x y-9 y=2 x+7$, i.e., $x(y-2)=9 y+7$, or $x=\frac{9 y+7}{y-2}$. Therefore, $f^{-1}(x)=\frac{9 x+7}{x-2}$.
Solution to question 6. - The equation is equivalent to $\sqrt{x^{2}+3}-$ $x=-3$, in which the left side is $\geqslant \sqrt{x^{2}}-x=|x|-x \geqslant 0$, so the equation has no solution.

Solution to question 7. - Expanding gives

$$
\frac{1}{3} x^{-5 / 3} y^{-3} \cdot \frac{1}{6} x^{-1 / 3} y^{-3}=\frac{1}{18} x^{-2} y^{-6}=\frac{1}{18 x^{2} y^{6}}
$$

Solution to question 8. - a. $f(0)=4-2=0$ and $f(x)=0$ is equivalent to $2^{x+1}=4$, i.e., $x+1=2$ or $x=1$, so the x intercept is $(1,0)$ and the y intercept is $(0,2)$. The horizontal asymptote is defined by $y=4$.
b. Below is a sketch of the graph.

c. The domain of f is \mathbb{R}, and the range of f is $(-\infty, 4)$.

Solution to question 9. - The multiplying factor for each compounding is $\frac{2.4}{100} \cdot \frac{1}{4}=\frac{3}{500}$, so after 10 years ($=40$ compoundings) the values of the investment will be

$$
\$ 5000\left(\frac{503}{500}\right)^{40} \approx \$ 6351.69
$$

Solution to question 10. $-\ln \left(\frac{1}{\sqrt[7]{e^{2}}}\right)=\ln \left(e^{-2 / 7}\right)=-\frac{2}{7}$.
Solution to question 11. - Combining the logarithms gives

$$
\ln \left(x^{1 / 2} y^{1 / 2} y^{-3 / 2} z^{-3 / 2} x^{-5 / 2} z^{-5 / 2}\right)=\ln \left(\frac{1}{x^{2} y z^{4}}\right)
$$

Solution to question 12. - Combining the logarithms gives

$$
\log \left(x^{2}+6 x+5\right)=\log \left(x^{2}+2 x+21\right)
$$

or equivalently, $x^{2}+6 x+5=x^{2}+2 x+21$, provided $x>-1$. Thus $4 x=16$, so $x=4$.

Solution to question 13. - Applying the logarithm gives

$$
4 x \ln (3)=(2-x) \ln (7), \quad \text { or } \quad(4 \ln (3)+\ln (7)) x=2 \ln (7)
$$

so $x=\frac{2 \ln (7)}{4 \ln (3)+\ln (7)}=\frac{\ln (49)}{\ln (81 \cdot 7)}=\frac{\ln (49)}{\ln (567)}$.
Solution to question 14. $-\cos (\vartheta)=\sqrt{1-(5 / 13)^{2}}=\frac{12}{13}, \tan (\vartheta)=$ $\frac{5}{12}, \sec (\vartheta)=\frac{13}{12}, \csc (\vartheta)=\frac{13}{5}$ and $\cot (\vartheta)=\frac{12}{5}$.

Solution to question 15. - If $\cos (\vartheta)>0$ and $\cos (\vartheta)<0$ then $\sin (\vartheta)=-\sqrt{1-(2 / 3)^{2}}=-\frac{1}{3} \sqrt{ } 5$, since $\sin (\vartheta)<0$, and $\tan (\vartheta)=-\frac{1}{2} \sqrt{ } 5$.
Solution to question 16. - If $\tan \vartheta=-\sqrt{ } 3$ and $0 \leqslant \vartheta<2 \pi$ then $\vartheta=\frac{2}{3} \pi$ or $\vartheta=\frac{2}{3} \pi+\pi=\frac{5}{3} \pi$.

Solution to question 17. - The right side of the given equation is

$$
\frac{\sin x}{\sec x-\cos x} \cdot \frac{\cos x}{\cos x}=\frac{\sin x \cos x}{1-\cos ^{2} x}=\frac{\sin x \cos x}{\sin ^{2} x}=\frac{\cos x}{\sin x}
$$

which is equal to the left side of the given equation.
Solution to question 18. - The smallest angle of $\triangle A B C$ is $\angle C$, since it is opposite the shortest side, and the law of cosines gives

$$
\cos (\angle C)=\frac{5^{2}+7^{2}-3^{2}}{2 \cdot 5 \cdot 7}=\frac{65}{70}=\frac{13}{14},
$$

so $\angle C=\cos ^{-1}\left(\frac{13}{14}\right) \approx 21.79^{\circ}$.
Solution to question 19. - If y is the altitude of the airplane and x is the horizontal distance from the building the point on the ground beneath the airplane, then

$$
y=x \tan \left(40^{\circ}\right) \quad \text { and } \quad y-20=x \tan \left(38^{\circ}\right)
$$

Multiplying the first by $\tan \left(38^{\circ}\right)$, multiplying the second by $\tan \left(40^{\circ}\right)$ and subtracting gives

$$
y\left(\tan \left(40^{\circ}\right)-\tan \left(38^{\circ}\right)\right)=20 \tan \left(40^{\circ}\right)
$$

or

$$
y=\frac{20 \tan \left(40^{\circ}\right)}{\tan \left(40^{\circ}\right)-\tan \left(38^{\circ}\right)} \approx 290 \mathrm{~m}
$$

