201-015-RE Algebra and Trigonometry

- [7] 1. Let g(x) = 3x + 4 and f be given by the graph below.
 - (a) What is the range of f?

If possible, evaluate the following or state that it is undefined:

(c)
$$(g \circ f)(2) =$$

(d)
$$f^{-1}(3) =$$

(e)
$$(f \circ f^{-1})(-4) =$$

[3] 2. Simplify the following expression as much as possible and eliminate negative exponents.

$$\left(3(a^2b^4c^{-2})^{-3}c^5\right)^{-2}$$

$$2x^3 + x^2 - 18x - 9$$

[3] **4.** Solve by completing the square.

$$x^2 + 4x - 2 = 0.$$

- [5] **5.** Given the quadratic function: $f(x) = -2x^2 + 4x + 6$:
 - (a) Find the coordinates of x- and y-intercepts.
 - (b) Find the coordinates of the vertex.
 - (c) Sketch a graph of the function using the information from the previous parts. Clearly label the vertex and intercepts.
 - 6. Simplify the expression. (Leave your final answer in factored form.)

[4] (a)
$$\frac{x^2 - x - 6}{x^2 + x} \div \frac{x^2 - 9}{x + 1}$$

[4] (b)
$$\frac{\frac{3}{x} - \frac{2}{x^2}}{9 - \frac{4}{x^2}}$$

7. Solve each of the following for x:

[4] (a)
$$2x^3 + x^2 = 21x$$

[4] (b)
$$\frac{x}{x^2 - 16} = \frac{2}{x^2 - 4x} - \frac{1}{x^2 + 4x}$$

[4] (c)
$$\sqrt{10x-5} + \sqrt{2x-5} = 4$$

- [4] 8. Solve the inequality: $\frac{(x+4)(3-x)}{x+2} \le 0$
- [3] **9.** Use polynomial long division to divide: $(9x^3 31x + 18) \div (3x 4)$ (Express your answer in the form $Q(x) + \frac{R(x)}{D(x)}$.)
- [3] **10.** Find the domain of the function $f(x) = \frac{\sqrt{10-x}}{3-\sqrt{x+1}}$.
- [1] 11. Use a calculator to evaluate $log_3(100)$ accurate to four decimal places.
- [5] **12.** For the function $f(x) = -\log_4(x+2) + 1$
 - (a) Find all intercepts.
 - (b) Write the equation of any asymptotes.
 - (c) Sketch a graph.
- [2] **13.** If \$3500 is invested at 2% interest compounded quarterly, what is the value after 6 years? (Round your answer to the nearest cent.)
- [4] **14.** Express in terms of the simplest possible logarithms: $\ln\left(\frac{x^4e^x}{\sqrt[3]{x+2}}\right)$
 - **15.** Solve for x:
- [4] (a) $\log_2(x-2) = 3 \log_2(x)$
- [4] (b) $125^{-3x} = \left(\frac{1}{5}\right)^{x-2}$
- [5] 16. The terminal side of an angle θ in standard position contains the point (-2,1).
 - (a) Find all six trig functions of θ . Give simplified exact values. (No decimals)
 - (b) Find the angle θ in the interval $[0^{\circ}, 360^{\circ})$ accurate to one decimal place.
- [3] 17. (a) Sketch the angle $\theta = \frac{4\pi}{3}$ in standard position.
 - (b) Without using a calculator evaluate $\sin\left(\frac{4\pi}{3}\right)$. Give an exact value and justify your answer.
- [3] 18. Without using a calculator find all angles θ in $[0, 2\pi)$ such that $\cot \theta = -1$.
- [3] **19.** Prove the identity: $\frac{1}{1-\cos x} + \frac{1}{1+\cos x} = 2\csc^2 x$
- [4] **20.** Identify the amplitude, period, and sketch at least two cycles of the function $f(x) = -3\sin\left(\frac{1}{2}x\right)$

201-015-RE Algebra and Trigonometry

- [3] **21.** The angle of elevation to the top of the IBM-Marathon Tower in Montreal is found to be 12.79° from the ground at a distance of 1000 meters from the base of the building. Using this information, find the height of the IBM-Marathon Tower in meters.
- [5] **22.** A triangle has sides of length a, b, c across from angles of measure A, B, C respectively. If a=6, b=9 and $A=20^{\circ}$ there are two possible triangles. Find c, B, and C for the two triangles. (Give answers accurate to two decimal places.)
- [3] 23. Two similar boxes were built out of cardboard. One has volume 135 cm³, the other 5 cm³. If 21 cm² of cardboard was used to build the smaller box, how much cardboard was used to build the bigger one?

ANSWERS

- 1. (a) $[-4,2) \cup [3,4)$
 - (b) -11
 - (c) 13
 - (d) 2
 - (e) -4
- 2. $\frac{a^{12}b^{24}}{9c^{22}}$
- 3. (x+3)(x-3)(2x+1)
- **4.** $x = -2 \pm \sqrt{6}$.
- **5.** (a) (0,6), (-1,0), (3,0)
 - (b) (1,8)

- **6.** (a) $\frac{x+2}{x(x+3)}$
 - (b) $\frac{1}{3x+2}$
- 7. (a) $-\frac{7}{2}$, 0, 3
 - (b) -3
 - (c) No solution
- 8. $[-4, -2) \cup [3, \infty)$
- 9. $3x^2 + 4x 5 \frac{2}{3x 4}$
- **10.** $[-1,8) \cup (8,10]$
- **11.** 4.1918
- **12.** (a) $(0, \frac{1}{2}), (2, 0)$
 - (b) x = -2

- **13.** \$3945.06
- **14.** $4 \ln x + x \frac{1}{3} \ln(x+2)$
- **15.** (a) 4
 - (b) $-\frac{1}{4}$
- **16.** (a) $\sin \theta = \frac{\sqrt{5}}{5}$, $\cos \theta = -\frac{2\sqrt{5}}{5}$, $\tan \theta = -\frac{1}{2}$, $\csc \theta = \sqrt{5}$, $\sec \theta = -\frac{\sqrt{5}}{2}$, $\cot \theta = -2$.
 - (b) 153.4°

(b)
$$-\frac{\sqrt{3}}{2}$$

18.
$$\frac{3\pi}{4}, \frac{7\pi}{4}$$

19.

20. amplitude = 3, period = 4π , $f(x) = -3\sin\left(\frac{1}{2}x\right)$

21. 227 m

22. $c_1 \approx 13.61, \, B_1 \approx 30.87^{\circ}, \, C_1 \approx 129.13^{\circ} \,\, \mathrm{Or} \,\, c_2 \approx 3.31, \, B_2 \approx 149.13^{\circ}, \, C_2 \approx 10.87^{\circ}$

23. 189 cm^2