[7] 1. Let $g(x)=3 x+4$ and f be given by the graph below.
(a) What is the range of f ?

If possible, evaluate the following or state that it is undefined:
(b) $(3 f-2 g)(1)=$
(c) $(g \circ f)(2)=$
(d) $f^{-1}(3)=$
(e) $\left(f \circ f^{-1}\right)(-4)=$

[3] 2. Simplify the following expression as much as possible and eliminate negative exponents.
$\left(3\left(a^{2} b^{4} c^{-2}\right)^{-3} c^{5}\right)^{-2}$
[3] 3. Factor completely.
$2 x^{3}+x^{2}-18 x-9$
[3] 4. Solve by completing the square.
$x^{2}+4 x-2=0$.
[5] 5. Given the quadratic function: $f(x)=-2 x^{2}+4 x+6$:
(a) Find the coordinates of $x-$ and y-intercepts.
(b) Find the coordinates of the vertex.
(c) Sketch a graph of the function using the information from the previous parts. Clearly label the vertex and intercepts.
6. Simplify the expression. (Leave your final answer in factored form.)
(a) $\frac{x^{2}-x-6}{x^{2}+x} \div \frac{x^{2}-9}{x+1}$
(b) $\frac{\frac{3}{x}-\frac{2}{x^{2}}}{9-\frac{4}{x^{2}}}$
7. Solve each of the following for x :
(a) $2 x^{3}+x^{2}=21 x$
(b) $\frac{x}{x^{2}-16}=\frac{2}{x^{2}-4 x}-\frac{1}{x^{2}+4 x}$
[4] (c) $\sqrt{10 x-5}+\sqrt{2 x-5}=4$
[4] 8. Solve the inequality: $\frac{(x+4)(3-x)}{x+2} \leq 0$
[3] 9. Use polynomial long division to divide: $\left(9 x^{3}-31 x+18\right) \div(3 x-4)$
(Express your answer in the form $Q(x)+\frac{R(x)}{D(x)}$.)
[3] 10. Find the domain of the function $f(x)=\frac{\sqrt{10-x}}{3-\sqrt{x+1}}$.
[1] 11. Use a calculator to evaluate $\log _{3}(100)$ accurate to four decimal places.
[5] 12. For the function $f(x)=-\log _{4}(x+2)+1$
(a) Find all intercepts.
(b) Write the equation of any asymptotes.
(c) Sketch a graph.
[2] 13. If $\$ 3500$ is invested at 2% interest compounded quarterly, what is the value after 6 years?
(Round your answer to the nearest cent.)
[4] 14. Express in terms of the simplest possible logarithms:
$\ln \left(\frac{x^{4} e^{x}}{\sqrt[3]{x+2}}\right)$
15. Solve for x :
[4] (a) $\log _{2}(x-2)=3-\log _{2}(x)$
[4] (b) $125^{-3 x}=\left(\frac{1}{5}\right)^{x-2}$
[5] 16. The terminal side of an angle θ in standard position contains the point $(-2,1)$.
(a) Find all six trig functions of θ. Give simplified exact values. (No decimals)
(b) Find the angle θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ accurate to one decimal place.
[3] 17. (a) Sketch the angle $\theta=\frac{4 \pi}{3}$ in standard position.
(b) Without using a calculator evaluate $\sin \left(\frac{4 \pi}{3}\right)$. Give an exact value and justify your answer.
[3] 18. Without using a calculator find all angles θ in $[0,2 \pi)$ such that $\cot \theta=-1$.
[3] 19. Prove the identity: $\frac{1}{1-\cos x}+\frac{1}{1+\cos x}=2 \csc ^{2} x$
[4] 20. Identify the amplitude, period, and sketch at least two cycles of the function $f(x)=-3 \sin \left(\frac{1}{2} x\right)$
[3] 21. The angle of elevation to the top of the IBM-Marathon Tower in Montreal is found to be 12.79° from the ground at a distance of 1000 meters from the base of the building. Using this information, find the height of the IBM-Marathon Tower in meters.
[5] 22. A triangle has sides of length a, b, c across from angles of measure A, B, C respectively. If $a=6, b=9$ and $A=20^{\circ}$ there are two possible triangles. Find c, B, and C for the two triangles. (Give answers accurate to two decimal places.)
[3] 23. Two similar boxes were built out of cardboard. One has volume $135 \mathrm{~cm}^{3}$, the other $5 \mathrm{~cm}^{3}$. If $21 \mathrm{~cm}^{2}$ of cardboard was used to build the smaller box, how much cardboard was used to build the bigger one?

ANSWERS

1. (a) $[-4,2) \cup[3,4)$
(b) -11
(c) 13
(d) 2
(e) -4
2. $\frac{a^{12} b^{24}}{9 c^{22}}$
3. $(x+3)(x-3)(2 x+1)$
4. $x=-2 \pm \sqrt{6}$.
5. (a) $(0,6),(-1,0),(3,0)$
(b) $(1,8)$
(c)

6. (a) $\frac{x+2}{x(x+3)}$
(b) $\frac{1}{3 x+2}$
7. (a) $-\frac{7}{2}, 0,3$
(b) -3
(c) No solution
8. $[-4,-2) \cup[3, \infty)$
9. $3 x^{2}+4 x-5-\frac{2}{3 x-4}$
10. $[-1,8) \cup(8,10]$
11. 4.1918
12. (a) $\left(0, \frac{1}{2}\right),(2,0)$
(b) $x=-2$
(c)

13. $\$ 3945.06$
14. $4 \ln x+x-\frac{1}{3} \ln (x+2)$
15. (a) 4
(b) $-\frac{1}{4}$
16. (a) $\sin \theta=\frac{\sqrt{5}}{5}, \cos \theta=-\frac{2 \sqrt{5}}{5}, \tan \theta=-\frac{1}{2}, \csc \theta=\sqrt{5}, \sec \theta=-\frac{\sqrt{5}}{2}, \cot \theta=-2$.
(b) 153.4°
17. (a)

(b) $-\frac{\sqrt{3}}{2}$
18. $\frac{3 \pi}{4}, \frac{7 \pi}{4}$.
19.
20. amplitude $=3$, period $=4 \pi, f(x)=-3 \sin \left(\frac{1}{2} x\right)$

21. 227 m
22. $c_{1} \approx 13.61, B_{1} \approx 30.87^{\circ}, C_{1} \approx 129.13^{\circ}$ Or $c_{2} \approx 3.31, B_{2} \approx 149.13^{\circ}, C_{2} \approx 10.87^{\circ}$
23. $189 \mathrm{~cm}^{2}$
