1. (6 points) Evaluate the following expressions.
(a) $(2-3)^{5}-5\left(9-3^{2}\right)+36^{0}$
(b) $(4-6)^{3} \div \frac{1-(-3)}{1+3\left(1^{2}-2\right)}-\frac{4}{5}$
(c) $\frac{1-2^{2}}{2^{3}-3^{2}} \div\left|\frac{5-(-2)^{2}}{1-9}\right|+4$
2. (4 points) Expand and simplify the following expressions.
(a) $(2 x-3)\left(4 x^{2}+6 x+9\right)-(2 x)^{3}$
(b) $(2 t-3 s)(2 t+3 s)-4(t-2)^{2}$
3. (2 points) A tumble dryer is sold at a 20% discount for $\$ 640$. What was the original selling price of the dryer? [Recall: Selling Price=Original Price - Original Price • Discount Rate]
4. (2 points) What was the initial sum deposited to my 1.2% Tax-Free Savings Account if I gained $\$ 3000$ in simple interest over the last ten years? [Recall: $I=P \cdot r \cdot t$]
5. (2 points) A toaster oven is sold for $\$ 26$ in a store that marks up small kitchen appliances by 30%. What was the original price of the toaster oven? [Recall: Selling Price=Cost + Cost • Markup Rate]
6. (6 points) Solve the following equations.
(a) $\frac{x+3}{7}=\frac{x}{4}-3$
(b) $5(a+1)-3(2-a)=1+2(a+4)+4(2 a-3)$
(c) $(t-3)(t+1)=t^{2}+t-3$
7. (3 points) Consider the line that passes through the points $(-5,2)$ and $(1,3)$.
(a) Find the slope of the line.
(b) Find the equation of the line.
(c) Find the x-intercept of the line.
8. (5 points) Consider the line passing through the point (2,1) and parallel to $2 x+y=7$.
(a) Find the equation of the line.
(b) Sketch both lines in the same coordinate system.
9. (3 points) Solve the following linear system by the method of substitution.
$\left\{\begin{array}{l}2 x+3 y=11 \\ 5 x-y=7\end{array}\right.$
10. (3 points) Solve the following linear system by the method of elimination.
$\left\{\begin{array}{l}4 x+3 y=4 \\ 2 x-6 y=-3\end{array}\right.$
11. (4 points) Simplify each of the following expressions and present the result without negative exponents. You may assume that all variables are positive.
(a) $\left(2 a b^{-2} c^{1}\right)^{3}\left(4 b^{2} c^{-1}\right)^{-1}=$
(b) $\left(\frac{30 x^{2} y^{-2} z^{3}}{45 z^{0} x^{-1} y^{5}}\right)^{-2}=$
12. (4 points) Factor each polynomial completely.
(a) $2 x^{2}-7 x-15$
(b) $a^{2}-8 a^{5}$
13. (3 points) Solve the equation $\sqrt{5 x-1}=x+1$ or show that it has no solutions.
14. (6 points) Solve the following equations for x by factoring.
(a) $(2 x+1)(x+1)=28$
(b) $x^{3}+2 x^{2}+1=x^{4}+1$
(c) $x^{3}-4 x^{2}-9 x+36=0$
15. (3 points) By taking square roots, find all solutions to $16(5 x-1)^{2}-2^{2}=0$.
16. (3 points) By completing the square, find all solutions to $x^{2}+10 x+23=0$.
17. (3 points) By using the Quadratic Formula, find all solutions to $2 x^{2}-5=8 x$.
18. (8 points) Simplify each of the following expressions. You may assume that all variables are positive.
(a) $\sqrt{50}-\sqrt{18}+3 \sqrt{8}$
(b) $(3 \sqrt{3}-\sqrt{20})(3 \sqrt{5}+\sqrt{12})$
(c) $\sqrt{30 x^{6} y^{5} z^{1}}$
(d) $\sqrt{\frac{12 a^{-4} b^{2}}{27 a^{4} b^{-1}}}$
19. (4 points) Rationalize the denominator of each expression and simplify.
(a) $\frac{7 \sqrt{12}}{10-2 \sqrt{3}}$
(b) $\frac{4}{x-\sqrt{x^{2}+2}}$
20. (3 points) Evaluate the following logarithms.
(a) $\log _{2}(32)$
(b) $\ln \left(e^{-2}\right)$
(c) $\log _{4}\left(\frac{1}{64}\right)$
21. (4 points) Solve each equation for x.
(a) $2^{3 x-5}+2^{4}=2^{5}$
(b) $\frac{1}{3^{x-5}}=27$
22. (2 points) Find the exact value of x and y in the right triangle below.

23. (3 points) If $\sec \theta=\frac{4}{\sqrt{3}}$ for the acute angle θ in a right triangle, find the exact values of the other five trigonometric functions.
24. (2 points) Find the midpoint between the points $(3,4)$ and $(2,-2)$.
25. (2 points) Find the distance between the points $(2,-2)$ and $(3,2)$.
26. (2 points) Which of the following are graphs of relations for which y is function of x ?

27. (4 points) Given $f(z)=z^{3}-5 z+2$, evaluate and simplify the following expressions.
(a) $f(-2)$
(b) $f\left(\frac{2}{3}\right)$
(c) $f(\sqrt{2})$
(d) $f(z+h)$
28. (4 points) Given the graph $y=f(x)$ of a function $f(x)$, find

(a) the domain of $f(x)$:
(b) the range of $f(x)$:
(c) the x-intercepts:
(d) the y-intercept:
(e) the intervals where $f(x)$ is positive:
(f) the intervals where $f(x)$ is negative:
(g) the local minima of $f(x)$:
(h) the local maxima of $f(x)$:

Answers

1. (a) 0
(b) $\frac{16}{5}$
(c) 28
2. (a) -27
(b) $-9 s^{2}+16 t-16$
3. $800 \$$
4. 25000 \$
5. $20 \$$
6. (a) $x=32$
(b) $a=1$
(c) $t=0$
7. (a) $\frac{1}{6}$
(b) $y=\frac{1}{6} x+\frac{17}{6}$
(c) $(-17,0)$
8. (a) $y=-2 x+5$
(b)
9. $x=\frac{32}{17}, y=\frac{41}{17}$
10. $x=\frac{1}{2}, y=\frac{2}{3}$
11. (a) $\frac{2 a^{3} c^{4}}{b^{8}}$
(b) $\frac{9 y^{14}}{4 x^{6} z^{6}}$
12. (a) $(2 x+3)(x-5)$
(b) $a^{2}(1-2 a)\left(1+2 a+4 a^{2}\right)$
13. $x=1, x=2$
14. (a) $x=3, x=-\frac{9}{2}$
(b) $x=-1, x=0, x=2$
(c) $x=-3, x=3, x=4$
15. $x=\frac{3}{10}, x=\frac{1}{10}$
16. $x=-5+\sqrt{2}, x=-5-\sqrt{2} \quad$ 17. $x=2+\frac{\sqrt{26}}{2}, x=2-\frac{\sqrt{26}}{2}$
17. (a) $8 \sqrt{2}$
(b) $-12+5 \sqrt{15}$
(c) $x^{3} y^{2} \sqrt{30 y z}$
(d) $\frac{2 b \sqrt{b}}{3 a^{4}}$
18. (a) $\frac{35 \sqrt{3}+21}{22}$
(b) $-2\left(x+\sqrt{x^{2}+2}\right)$
19. (a) 5
(b) -2
(c) -3
20. (a) $x=3$
(b) $x=2$
21. $x=\frac{5 \sqrt{3}}{3}, y=\frac{10 \sqrt{3}}{3}$
22. $\sin \theta=\frac{\sqrt{13}}{4}, \cos \theta=\frac{\sqrt{ }}{4}$
23. functions: (a) and (d) \qquad
$\rightarrow 4 \sqrt{13}$
, $\cot \theta=\frac{\sqrt{39}}{13}$
24. $\left(\frac{5}{2}, 1\right)$
25. $\sqrt{17}$
26. (a) $[-4,4]$
(b) $[-2,2]$
27. (a) 4
(b) $-\frac{28}{27}$
(c) $-3 \sqrt{2}+2$
(d) $z^{3}+3 z^{2} h+3 z h^{2}+h^{3}-5 z-5 h+2$
(f) $(-2,1)$
(g) $x=-1, f(-1)=-2$
(h) $x=-3, f(-3)=2$ and $x=3, f(3)=2$
