1. (6 points) Evaluate the following expressions.
(a) $-3(7-9)^{3}-(3-5)^{2}\left(2+3^{1}\right)+5^{0}$
(b) $\frac{(22-32)^{2}}{|-3 \cdot 2 \cdot 10+2 \cdot 5|}+\left|\frac{11-8 \cdot 11}{11}\right|-\frac{7^{0}(4-6)}{2}$
(c) $\frac{3-5^{(3-2)}}{2 \cdot 2^{2}} \div \frac{5-(-2)^{3}}{5^{2}+3^{2}}$
2. (4 points) Expand and simplify the following expressions.
(a) $-(3 x-(4+5 x))^{2}+\frac{3}{4}(8-12 x)$
(b) $5(2 x(x+1)-(3-x))-2(3 x-1)(3 x+1)$
3. (2 points) A coffee grinder is sold at a store where small appliances are marked up by 15%. If the selling price is $\$ 23$, what was the original price of the coffee grinder? [Recall: Selling Price $=$ Original Price + Original Price \cdot Markup Rate]
4. (2 points) What was the principal amount deposited to my account if it earned $\$ 1200$ in 6 years in simple interest at an annual interest rate of 4% ? [Recall: $I=P \cdot r \cdot t$]
5. (6 points) Solve for x in the following equations.
(a) $2(6 x+1)=8(x+1)-2(1-2 x)$
(b) $\frac{x}{3}-\frac{x+2}{8}+\frac{x+3}{6}=\frac{2-x}{4}$
(c) $(x+5)^{2}=(x-3)(x+3)+8 x$
6. (4 points) Consider the the points $A(-3,4)$ and $B(-5,-2)$.
(a) Find the equation of the line that passes through the points A and B.
(b) Find the midpoint between the points A and B.
(c) Find the distance between the points A and B.
(d) Find the horizontal line that passes through the point B.
7. (4 points) Consider the line that passes through the point $(-2,3)$ and perpendicular to $2 x-y+7=$ 0 .
(a) Find the equation of the line.
(b) Sketch both lines in the same coordinate system.
8. (3 points) Solve the following linear system by the method of substitution.

$$
\left\{\begin{aligned}
-4 x+9 y & =9 \\
x-3 y & =-6
\end{aligned}\right.
$$

9. (3 points) Solve the following linear system by the method of elimination.

$$
\left\{\begin{array}{l}
3 x-2 y=2 \\
5 x-5 y=10
\end{array}\right.
$$

10. (4 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
(a) $-\left(3 x^{3} y^{-2} z^{4}\right)^{3}\left(2 x y^{3} z^{0}\right)^{-2}=$
(b) $\left(\frac{-3 x^{-4} y^{2} z^{3}}{21 x^{3} z^{2}}\right)^{-2}=$
11. (4 points) Factor each polynomial completely.
(a) $7 x^{2}-5 x-2$
(b) $3 x^{4}+9 x^{3}+6 x^{2}$
12. (3 points) Solve the equation $\sqrt{2 x-7}=x-3$ or show that it has no solutions.
13. (6 points) Solve the following equations for x by factoring.
(a) $3 x^{2}+8=10 x$
(b) $x^{3}-9 x+18=2 x^{2}$
14. (3 points) By taking square roots, find all solutions to $36\left(\frac{3 x-2}{2}\right)^{2}-9=0$.
15. (3 points) By completing the square, find all solutions to $x^{2}-8 x+21=6$.
16. (3 points) By using the Quadratic Formula, find all solutions to $5 x^{2}+9 x=-4$.
17. (8 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
(a) $4 \sqrt{18}+6 \sqrt{12}-6 \sqrt{27}$
(b) $(3 \sqrt{2}+4 \sqrt{5})(\sqrt{2}-3 \sqrt{5})$
(c) $\sqrt{3200 x^{13} y^{9} z^{11}}$
(d) $\sqrt{\frac{50 x^{3} y^{-4}}{180 x^{-4} y^{-8}}}$
18. (4 points) Rationalize the denominator of each expression and simplify.
(a) $\frac{3}{\sqrt{5}-\sqrt{3}}$
(b) $\frac{5 \sqrt{2}}{3 \sqrt{7}}$
19. (4 points) Evaluate the following expression: $\log _{4}(64)-\ln \left(e^{2}\right)+\log _{3}\left(\frac{1}{27}\right)$
20. (4 points) Solve each equation for x.
(a) $3^{2 x-1}+6=3^{2}$
(b) $\frac{3}{2^{x-5}}=12$
21. (2 points) Find the exact values of x and y in the right triangle below.

22. (3 points) If $\csc \theta=\frac{\sqrt{7}}{2}$ for the acute angle θ in a right triangle, find the exact values of the other five trigonometric functions.
23. (2 points) Find the exact value of the following expression: $\sec 45^{\circ}-\sin 60^{\circ}$.
24. (2 points) Which of the following are graphs of relations for which y is function of x ?

25. (5 points) Given $f(x)=x^{2}-3 x+1$ and $g(x)=$ $\frac{3}{2} x+\frac{1}{2}$, evaluate and simplify the following expressions.
(a) $\frac{g(1)}{f(5)}=$
(b) $f(\sqrt{2})-g(-1)=$
(c) $f(x+h)=$
26. (6 points) Given the graph $y=f(x)$ of a function $f(x)$, find

(a) the domain of $f(x)$:
(b) the range of $f(x)$:
(c) the x-intercepts:
(d) the y-intercept:
(e) the local minima of $f(x)$:
(f) the local maxima of $f(x)$:

Answers.

1. (a) 5 (b) 10 (c) $-\frac{17}{26}$
2. (a) $-4 x^{2}-25 x-10$ (b) $-8 x^{2}+15 x-13$
3. $\$ 20$
4. $\$ 5000$
5. (a) No solution (b) $x=\frac{2}{5}$ (c) $x=-17$
6. (a) $y=3 x+13$ (b) $(-4,1)$
(c) $2 \sqrt{10}$ (d) $y=-2$
7. (a) $y=-\frac{1}{2} x+2$
(b)

8. $x=9, y=5$
9. $x=-2, y=-4$
10. (a) $-\frac{27 x^{7} z^{12}}{4 y^{12}}$ (b) $\frac{49 x^{14}}{y^{4} z^{2}}$
11. (a) $(7 x+2)(x-1)(b) 3 x^{2}(x+1)(x+2)$
12. $x=4$ (checks)
13. (a) $x=2, x=\frac{4}{3}$ (b) $x=-3, x=3, x=2$
14. $x=\frac{1}{3}, x=1$
15. $x=3, x=5$
16. $x=-1, x=-\frac{4}{5}$
17. (a) $12 \sqrt{2}-6 \sqrt{3}$ (b) $-54-5 \sqrt{10}$
(c) $40 x^{6} y^{4} z^{5} \sqrt{2 x y z}$ (d) $\frac{x^{3} y^{2} \sqrt{10 x}}{6}$
18. (a) $\frac{3 \sqrt{5}+3 \sqrt{3}}{2}$ (b) $\frac{5 \sqrt{14}}{21}$
19. $3-2+(-3)=-2$
20. (a) $x=1$ (b) $x=3$
21. $x=\frac{7}{2}, y=\frac{7 \sqrt{3}}{2}$
22. $\sin \theta=\frac{2 \sqrt{7}}{7}, \cos \theta=\frac{\sqrt{21}}{7}, \tan \theta=\frac{2 \sqrt{3}}{3}$ $\csc \theta=\frac{\sqrt{7}}{2}, \sec \theta=\frac{\sqrt{21}}{3}, \cot \theta=\frac{\sqrt{3}}{2}$
23. $\sqrt{2}-\frac{\sqrt{3}}{2}=\frac{2 \sqrt{2}-\sqrt{3}}{2}$
24. (a) and (c)
25. (a) $\frac{2}{11}$ (b) $4-3 \sqrt{2}$ (c) $x^{2}+2 x h+h^{2}-3 x-3 h+1$
26. (a) $[-3,4]$ (b) $[-4,3]$ (c) $(-3,0),(-1,0),(3,0)$ (d) $(0,-3)(e)(1,-4)(f)(-2,2)$
