1. (6 points) Evaluate the following expressions:
(a) $26-\left[\left|5-20^{0}-6\right|+(4-5)^{3}\left(-6+10^{1}\right)\right]$
(b) $\left(\frac{2}{5}-\frac{1}{3}\right)+\left(\frac{2}{3} \div \frac{5}{4}\right)$
(c) $\frac{5^{2}-5^{(5-4)}}{2 \cdot 2^{3}} \div \frac{6 \cdot(-2)^{2}}{5+|4-7|}$
2. (2 points) A phone originally sells for $\$ 300$, but is put on sale for only $\$ 195$. What is the discount rate? [Recall: Sale Price $=$ Original Price - Original Price \cdot Discount Rate]
3. (2 points) Suppose Jan borrows $\$ 1500$ at a simple annual interest rate. After two years Jan pays off the loan with a payment of $\$ 2040$. What was the annual interest rate charged? [Recall: $I=\operatorname{Prt}$]
4. (4 points) Expand and simplify the following expressions.
(a) $6(5+3 x)+(2 x-1)(x-7)$
(b) $2(3-x)^{2}-(x+2)(x-2)$
5. (4 points) Simplify each of the following expressions and present the result without negative exponents. You may assume that all variables are positive.
(a) $\left(4 x^{2} y^{-3} z^{0}\right)^{3}\left(4 x y^{2} z^{-1}\right)^{-5}$
(b) $\left(\frac{-16 x^{-3} y^{3} z}{4 x y^{3} z^{-4}}\right)^{-2}$
6. (6 points) Solve the following equations for x :
(a) $4(3 x-1)-2(x+1)=2+2(x-1)-6(2 x-1)$
(b) $x+\frac{25-x}{9}=\frac{x}{3}-\frac{5}{3}$
(c) $(2 x+1)^{2}=(2 x-3)(2 x+3)$
7. (8 points) Simplify each of the following expressions. You may assume that all variables are positive.
(a) $4 \sqrt{45}-2 \sqrt{500}-3 \sqrt{125}$
(b) $(\sqrt{7}-2 \sqrt{3})(5 \sqrt{7}-\sqrt{3})$
(c) $5 x^{3} z^{2} \sqrt{9 x^{7} y^{16} z^{-6}}$
(d) $\sqrt{\frac{4 x^{2} y}{81 x^{-3} y^{5}}}$
8. (5 points) Consider the points $A(-3,11), B(1,5)$, and $C(6,0)$.
(a) Find the equation of the line that passes through B and C;
(b) Find the equation of the line passing through A and parallel to the line $x=5$;
(c) Find the midpoint between the points A and C;
(d) Find the distance between the points A and B.
9. (4 points) Consider the line that passes through the point $(2,-1)$ and is parallel to $2 x+4 y=-8$.
(a) Find the equation of the line.
(b) Sketch both lines in the same coordinate system.
10. (3 points) Solve the following linear system by the method of elimination.
$4 x-y=2$
$2 x+y=4$
11. (3 points) Solve the following linear system by the method of substitution.
$5 x+y=16$
$-x+2 y=-1$
12. (4 points) Factor each polynomial completely:
(a) $2 x^{2}-x-15$
(b) $x^{2}\left(x^{2}-25\right)-9\left(x^{2}-25\right)$
13. (3 points) Solve the equation $\sqrt{7+3 x}=x+3$ or show that it has no solutions.
14. (6 points) Solve the following equations by factoring:
(a) $x^{3}+36 x=4 x^{3}+3 x^{2}$
(b) $(3 x+2)(x+1)=10$
15. (3 points) By taking square roots, find all solutions to $25\left(x-\frac{1}{2}\right)^{2}-16=0$.
16. (3 points) By completing the square, find all solutions to $x^{2}-6 x+5=12$.
17. (3 points) By using the Quadratic Formula, find all solutions to $2 x^{2}+1=4 x$.
18. (4 points) Rationalize the denominator of each expression and simplify:
(a) $\frac{10}{\sqrt{5}-\sqrt{2}}$
(b) $\frac{\sqrt{15}+\sqrt{20}}{\sqrt{5}}$
19. (4 points) Evaluate the following expression: $\log _{7} 49+\log _{2} \frac{1}{16}-\ln \left(e^{-21}\right)$
20. (4 points) Solve each equation for x :
(a) $25^{5-3 x}+3^{3}=28$
(b) $9^{3 x+6}=27^{x-2}$
21. (2 points) Find the exact values of x and y in this triangle:

22. (3 points) If $\sec \theta=7$ for an acute angle in a triangle, find the exact values of the other five trigonometric functions.
23. (2 points) Find the exact value of the following expression: $\cos 30^{\circ}-\sin 45^{\circ}$
24. (2 points) Which of the following curves are graphs of relations for which y is a function of x (and which are not):
(a)

(b)

(c)

(d)

25. (5 points) Given $f(x)=x^{2}-x+1$ and $g(x)=\frac{1}{2} x+2$, evaluate and simplify the following expressions
(a) $f(1)-g(6)=$
(b) $\frac{f(1)}{g(6)}=$
(c) $f(x+h)-f(x)=$
26. (5 points) For the function (whose graph is given), find:
(a) the domain,
(b) the range,
(c) the x and y intercepts,
(d) the intervals where the function is positive,
(e) the intervals where the function is negative,
(f) the local extrema.

Answers

1. (a) 28
(b) $\frac{3}{5}$
(c) $\frac{5}{12}$
2. 35%
3. 18%
4. (a) $2 x^{2}+3 x+37$
(b) $x^{2}-12 x+22$
5. (a) $\frac{x z^{5}}{16 y^{19}}$
(b) $\frac{x^{8}}{16 z^{10}}$
6. (a) $x=\frac{3}{5}$
(b) $x=-8$
(c) $x=-\frac{5}{2}$
7. (a) $-23 \sqrt{5}$
(b) $41-11 \sqrt{21}$
(c) $\frac{15 x^{6} y^{8} \sqrt{x}}{z}$
(d) $\frac{2 x^{2} \sqrt{x}}{9 y^{2}}$
8. (a) $y=-x+6$
(b) $x=-3$
(c) $\left(\frac{3}{2}, \frac{11}{2}\right)$
(d) $2 \sqrt{13}$
9. (a) $y=\frac{-1}{2} x$
(b)

10. $x=1, y=2$
11. $x=3, y=1$
12. (a) $(2 x+5)(x-3)$
(b) $(x+3)(x-3)(x+5)(x-5)$
13. $x=-2,-1$
14. (a) $x=-4,0,3$
(b) $x=-\frac{8}{3}, 1$
15. $x=-\frac{3}{10}, \frac{13}{10}$
16. $x=-1,7$
17. $x=\frac{2 \pm \sqrt{2}}{2}=1 \pm \frac{1}{2} \sqrt{2}$
18. (a) $\frac{10(\sqrt{5}+\sqrt{2})}{3}$
(b) $\sqrt{3}+2$
19. 19
20. (a) $x=\frac{5}{3}$
(b) $x=-6$
21. $x=\frac{10 \sqrt{3}}{3}, y=\frac{5 \sqrt{3}}{3}$
22. $\sin \theta=\frac{4 \sqrt{3}}{7}, \cos \theta=\frac{1}{7}, \tan \theta=4 \sqrt{3}$, $\csc \theta=\frac{7 \sqrt{3}}{12}, \sec \theta=7, \cot \theta=\frac{\sqrt{3}}{12}$
23. $\frac{\sqrt{3}-\sqrt{2}}{2}$
24. (a) Yes (b) No (c) Yes (d) No
25. (a) -4
(b) $\frac{1}{5}$
(c) $2 x h+h^{2}-h$
26. (a) $[-5,5]$
(b) $[-4,4]$
(c) $(-4,0),(2,0),(4,0),(0,-3)$
(d) $[-5,-4) \cup(4,5]$
(e) $(-4,2) \cup(2,4)$
(f) local minimums: $(-3,-4),(0,-3)$ and $(3,-2)$; local maximums: $(-1,-1)$ and $(2,0)$,
