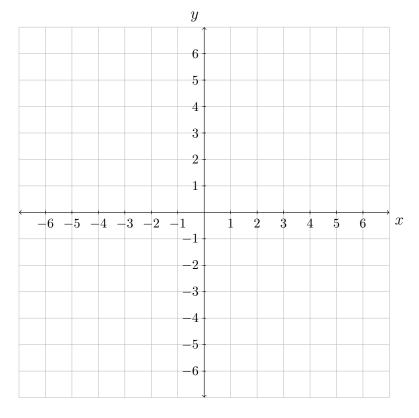
1. (2 points) Evaluate the numerical expression. Simplify your answer completely.

$$5 - 2\left(\frac{4^0}{|4 - 7|} + \frac{3}{5} \div \frac{2}{15}\right)$$

2. (2 points) Expand and simplify the following algebraic expression.


$$(3x+1)^2 + 2[5 - (x+1)(x-1)]$$

3. Solve for x in the following equations.

(a) (3 points)
$$\frac{x}{6} - \frac{2x+3}{2} = \frac{2x}{3}$$

(b) (3 points)
$$2[6 - (5x - 4)] = 2(2x + 5) + 3$$

- **4.** Consider the points A = (-3, 7), B = (9, -1), and C = (-5, 3).
 - (a) (2 points) Find the equation of the line that passes through A and B.
 - (b) (1 point) Find the midpoint between the points B and C.
 - (c) (2 points) Find the distance between the points A and C. Simplify your answer.
- **5.** (3 points) Find an equation of the line that passes through the point (0, -2) and is perpendicular to 3x + 5y = 1.
- **6.** (2 points) On the given axes, sketch the line $y = \frac{3}{2}x 6$.

7. (4 points) Solve the following linear system by the method of substitution.

$$\begin{cases} x + 2y = 7 \\ 2x + 3y = 9 \end{cases}$$

8. (4 points) Simplify the following expression and present the result without negative exponents. You may assume that all variables represent positive numbers.

$$\left(\frac{(-2x^5yz)(yz)}{2^2x^7y^{-2}z^2}\right)^3$$

- 9. Factor each polynomial completely.
 - (a) (3 points) $6x^2 + 13x 5$
 - (b) (2 points) $5x^2 500$
- 10. (4 points) Solve for x by factoring.

$$x^3 - 11x^2 + 28x = 0$$

11. (3 points) Simplify the following expression. You may assume that all variables represent positive numbers.

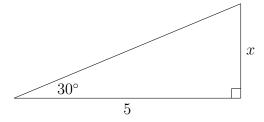
$$x\sqrt{12x^3y^2} + y\sqrt{27x^5}$$

12. (4 points) Solve the following equation.

$$6 + \sqrt{2x - 2} = 10$$

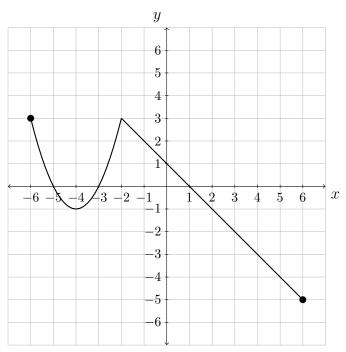
- 13. (3 points) By using the Quadratic Formula, find all solutions to $4x^2 3x 1 = 0$. As usual, present your answers in fully simplified form.
- 14. (2 points) Rationalize the denominator and simplify the result.

$$\frac{6}{\sqrt{5}-\sqrt{3}}$$


15. (3 points) Evaluate the following expression.

$$\log_3 9 + \log_5 \left(\frac{1}{25}\right) + \ln e$$

16. (3 points) Solve the following equation for x.


$$3^{2x+10} - 80 = 1$$

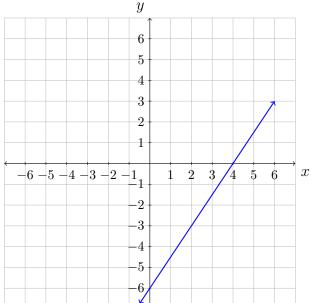
17. (3 points) Find the exact value of x in the triangle below. Simplify your answer. (Note: the illustration may not be exactly to scale.)

- **18.** (4 points) Let θ be an acute angle in a right angle triangle. If $\cos \theta = \frac{6}{7}$, find the exact values of $\tan \theta$, $\sin \theta$, and $\sec \theta$.
- **19.** Given $f(x) = x^2 9$ and g(x) = |2x 5|
 - (a) (1 point) Evaluate and simplify the following expression. f(-2) + g(1)

- (b) (2 points) Solve f(x) = 0.
- **20.** For the following function f, whose graph is given below, answer the following questions.
 - (a) (1 point) The domain of f(x).
 - (b) (1 point) The range of f(x).
 - (c) (1 point) The y-intercept.
 - (d) (1 point) The x-intercept(s).
 - (e) (1 point) The interval(s) where f(x) is positive.

Answers:

1.
$$-\frac{14}{3}$$


2.
$$7x^2 + 6x + 13$$

3. (a)
$$-1$$
 (b) $\frac{1}{2}$

4. (a)
$$y = -\frac{2}{3}x + 5$$
 (b) $(2, 1)$ (c) $2\sqrt{5}$

5.
$$y = \frac{5}{3}x - 2$$

6.

7.
$$x = -3, y = 5$$

8.
$$\frac{-y^{12}}{8x^6}$$

9. (a)
$$(2x+5)(3x-1)$$
 (b) $5(x+10)(x-10)$

10.
$$x = 0, 4, 7$$

$$11. \ 5x^2y\sqrt{3x}$$

12.
$$x = 9$$

13.
$$x = -\frac{1}{4}, 1$$

14.
$$3(\sqrt{5} + \sqrt{3})$$

15. 1

16.
$$x = -3$$

17.
$$x = \frac{5\sqrt{3}}{3}$$

18.
$$\tan \theta = \frac{\sqrt{13}}{6}$$
, $\sin \theta = \frac{\sqrt{13}}{7}$, and $\sec \theta = \frac{7}{6}$.

19. (a)
$$-2$$
 (b) $x = -3, x = 3$

20. (a)
$$x \in [-6, 6]$$
 (b) $y \in [-5, 3]$ (c) $(0, 1)$ (d) $(-5, 0), (-3, 0), (1, 0)$ (e) $[-6, -5)$ and $(-3, 1)$