1. (2 points) Evaluate the numerical expression. Simplify your answer completely.

$$
5-2\left(\frac{4^{0}}{|4-7|}+\frac{3}{5} \div \frac{2}{15}\right)
$$

2. (2 points) Expand and simplify the following algebraic expression.
$(3 x+1)^{2}+2[5-(x+1)(x-1)]$
3. Solve for x in the following equations.
(a) (3 points) $\frac{x}{6}-\frac{2 x+3}{2}=\frac{2 x}{3}$
(b) (3 points) $2[6-(5 x-4)]=2(2 x+5)+3$
4. Consider the points $A=(-3,7), B=(9,-1)$, and $C=(-5,3)$.
(a) (2 points) Find the equation of the line that passes through A and B.
(b) (1 point) Find the midpoint between the points B and C.
(c) (2 points) Find the distance between the points A and C. Simplify your answer.
5. (3 points) Find an equation of the line that passes through the point $(0,-2)$ and is perpendicular to $3 x+5 y=1$.
6. (2 points) On the given axes, sketch the line $y=\frac{3}{2} x-6$.

7. (4 points) Solve the following linear system by the method of substitution.

$$
\left\{\begin{array}{r}
x+2 y=7 \\
2 x+3 y=9
\end{array}\right.
$$

8. (4 points) Simplify the following expression and present the result without negative exponents. You may assume that all variables represent positive numbers.

$$
\left(\frac{\left(-2 x^{5} y z\right)(y z)}{2^{2} x^{7} y^{-2} z^{2}}\right)^{3}
$$

9. Factor each polynomial completely.
(a) (3 points) $6 x^{2}+13 x-5$
(b) (2 points) $5 x^{2}-500$
10. (4 points) Solve for x by factoring.
$x^{3}-11 x^{2}+28 x=0$
11. (3 points) Simplify the following expression. You may assume that all variables represent positive numbers.
$x \sqrt{12 x^{3} y^{2}}+y \sqrt{27 x^{5}}$
12. (4 points) Solve the following equation.
$6+\sqrt{2 x-2}=10$
13. (3 points) By using the Quadratic Formula, find all solutions to $4 x^{2}-3 x-1=0$. As usual, present your answers in fully simplified form.
14. (2 points) Rationalize the denominator and simplify the result.
$\frac{6}{\sqrt{5}-\sqrt{3}}$
15. (3 points) Evaluate the following expression.
$\log _{3} 9+\log _{5}\left(\frac{1}{25}\right)+\ln e$
16. (3 points) Solve the following equation for x.
$3^{2 x+10}-80=1$
17. (3 points) Find the exact value of x in the triangle below. Simplify your answer. (Note: the illustration may not be exactly to scale.)

18. (4 points) Let θ be an acute angle in a right angle triangle. If $\cos \theta=\frac{6}{7}$, find the exact values of $\tan \theta$, $\sin \theta$, and $\sec \theta$.
19. Given $f(x)=x^{2}-9$ and $g(x)=|2 x-5|$
(a) (1 point) Evaluate and simplify the following expression. $f(-2)+g(1)$
(b) (2 points) Solve $f(x)=0$.
20. For the following function f, whose graph is given below, answer the following questions.
(a) (1 point) The domain of $f(x)$.
(b) (1 point) The range of $f(x)$.
(c) (1 point) The y-intercept.
(d) (1 point) The x-intercept(s).
(e) (1 point) The interval(s) where $f(x)$ is positive.

Answers:

1. $-\frac{14}{3}$
2. $7 x^{2}+6 x+13$
3. (a) $-1 \quad$ (b) $\frac{1}{2}$
4. (a) $y=-\frac{2}{3} x+5 \quad$ (b) $(2,1) \quad$ (c) $2 \sqrt{5}$
5. $y=\frac{5}{3} x-2$
6.

7. $x=-3, y=5$
8. $\frac{-y^{12}}{8 x^{6}}$
9. (a) $(2 x+5)(3 x-1) \quad$ (b) $5(x+10)(x-10)$
10. $x=0,4,7$
11. $5 x^{2} y \sqrt{3 x}$
12. $x=9$
13. $x=-\frac{1}{4}, 1$
14. $3(\sqrt{5}+\sqrt{3})$
15. 1
16. $x=-3$
17. $x=\frac{5 \sqrt{3}}{3}$
18. $\tan \theta=\frac{\sqrt{13}}{6}, \sin \theta=\frac{\sqrt{13}}{7}$, and $\sec \theta=\frac{7}{6}$.
19. (a) $-2 \quad$ (b) $x=-3, x=3$
20. (a) $x \in[-6,6]$
(b) $y \in[-5,3]$
(c) $(0,1)$
(d) $(-5,0),(-3,0),(1,0)$
(e) $[-6,-5)$ and $(-3,1)$

