1. (6 points) Evaluate the following expressions.
(a) $19-\left(7+\left|3-3^{2} \cdot 2\right|\right)$
(b) $\left(\frac{1}{5}-\frac{3}{8}\right)+\left(\frac{3}{4} \cdot \frac{7}{5}\right)$
(c) $\left(4^{0}-4^{2}\right) \div \frac{2(3-2)}{1+|-3|}$
2. (4 points) Expand and simplify the following algebraic expressions.
(a) $5(x+3)(4 x-3)-5 x(x+3)$
(b) $2-(1-x)^{2}$
3. (6 points) Solve for x in the following equations.
(a) $12 x+2=8-2(1-2 x)+8 x$
(b) $3(7+5 x)=37-[5(x+2)-11 x]$
(c) $x+\frac{7}{6}=\frac{5}{9} x-\frac{11}{18}$
4. (4 points) Simplify the following expressions. Your answers should have no negative exponents.
(a) $\left(2 x^{3} y^{-3} z^{3}\right)^{-2}\left(5 x^{-1} y^{2} z^{3}\right)^{2}$
(b) $\left(\frac{16 a^{5} b^{-8} c^{7}}{8 a^{-2} b^{-3} c^{5}}\right)^{3}$
5. (4 points) Factor completely.
(a) $2 x^{4}+4 x^{2}-30$
(b) $16 d^{4}-2 d$
6. (8 points) Solve the following equations by factoring.
(a) $x^{2}-5 x-6=0$
(b) $x^{3}+3 x^{2}-4 x-12=0$
(c) $(2 x-1)^{2}-9=0$
(d) $6 x^{4}+5 x^{3}-4 x^{2}=0$
7. (2 points) An exercise bike is on sale for $\$ 390$ after a discount of 25%, Find the regular price of the bike. (Recall: Sale price $=$ Original Price $-($ Discount rate \cdot Original Price $)$
8. (2 points) Suppose you borrow $\$ 1600$ at a simple annual interest rate. The loan with interest was to be repaid at the end of the second year. What was the annual interest rate if a total of $\$ 2048$ was repaid? (Recall: $I=\operatorname{Prt}$)
9. (8 points) Simplify.
(a) $4 x^{2} z \sqrt{48 x^{9} y^{4} z^{16}}$
(b) $\frac{\sqrt{24 x^{10} y^{8} z^{6}}}{\sqrt{2 x^{3} y^{8}}}$
(c) $2 \sqrt{27}-3 \sqrt{50}-5 \sqrt{3}+\sqrt{32}$
(d) $(\sqrt{2}-3 \sqrt{10})(\sqrt{10}+2 \sqrt{2})$
10. (3 points) Solve for x, or show there is no solution. Check your answer. $\sqrt{x+7}-5=x$
11. (2 points) Rationalize the denominator and simplify.
(a) $\frac{7 \sqrt{2}}{2 \sqrt{5}}$
(b) $\frac{\sqrt{2}}{\sqrt{4}-\sqrt{8}}$
12. (3 points) By using the quadratic formula, find the solution(s) to $2 x^{2}+x-1=3 x$.
13. (3 points) By completing the square, find the solution(s) to $x^{2}=6 x+7$.
14. (3 points) By taking square roots, find the solution(s) to $4(2 x+3)^{2}-9=0$.
15. (3 points) Solve the system by the method of substitution.
$\left\{\begin{array}{l}4 x-y=2 \\ -3 x+2 y=6\end{array}\right.$
16. (3 points) Solve the system by the method of elimination.

$$
\left\{\begin{array}{l}
5 x-2 y=7 \\
6 x+4 y=2
\end{array}\right.
$$

17. (3 points) Determine whether the following pairs of lines are parallel, perpendicular, or neither.
(a) $\left\{\begin{array}{l}4 x-2 y=-14 \\ 2 x+y=7\end{array}\right.$
(b) $\left\{\begin{array}{l}2 x+3 y=1 \\ 6 x-4 y=17\end{array}\right.$
18. (8 points) Given points $A(-4,1), B(2,3), C(4,3)$
(a) Write an equation for the line that passes through points A and B.
(b) Write an equation for the line that passes through B and is perpendicular to the line $x=-7$.
(c) Determine the distance between points A and B.
(d) Find the midpoint of the line segment connecting the points A and C.
19. (5 points) Given $f(x)=2 x^{2}+7 x+9$ and $g(x)=4-5 x$, find the following:
(a) $f(-1)$
(b) $g(-2)$
(c) the value(s) of x where $g(x)=0$
(d) $f(2)-g(-2)$
20. (6 points) Find the domain, range, intercepts, sign (where $f(x)$ is positive/negative) and extrema (local \max / min) of the following function.

21. (6 points) Solve the following exponential equations for x.
(a) $9^{x+4}=27^{5 x-3}$
(b) $3\left(2+e^{\frac{x}{4}}\right)=27$
(c) $2^{x+2}=3$
22. (3 points) Let θ be an acute angle of a right triangle.

Given $\tan (\theta)=\frac{1}{2}$, find the exact values of $\sin (\theta)$ and $\sec (\theta)$.
23. (2 points) Given $\sec (\theta)=\frac{2}{\sqrt{3}}$, find the acute angle θ.
24. (3 points) Find the exact values of x and y.

Answers

1. $(\mathrm{a})-3 \quad(\mathrm{~b}) \frac{7}{8}$ (c) -30
2. (a) $15 x^{2}+30 x-45$ (b) $-x^{2}+2 x+1$
3. (a) No solution (b) $\frac{2}{3}$ (c) $x=-4$
4. (a) $\frac{25 y^{10}}{4 x^{8}}$ (b) $\frac{8 a^{21} c^{6}}{b^{15}}$
5. (a) $2\left(x^{2}+5\right)\left(x^{2}-3\right)$ (b) $2 d(2 d-1)\left(4 d^{2}+2 d+1\right)$
6. (a) $x=-1$ and $x=6$ (b) $x=-3, x=-2$, and $x=2$
(c) $x=-1$ and $x=2$ (d) $x=-\frac{4}{3}, x=0$, and $x=\frac{1}{2}$
7. $\$ 520$
8. 14%
9. (a) $16 x^{6} y^{2} z^{9} \sqrt{3 x}$
(b) $2 x^{3} z^{3} \sqrt{3 x}$
(c) $\sqrt{3}-11 \sqrt{2}$
(d) $-26-10 \sqrt{5}$
10. $x=-3(x=-6$ is not a solution $)$
11. (a) $\frac{7 \sqrt{10}}{10}$ (b) $-\frac{2+\sqrt{2}}{2}$
12. $x=\frac{1 \pm \sqrt{3}}{2}$
13. $x=-1$ and $x=7$
14. $x=-\frac{9}{4}$ and $x=-\frac{3}{4}$
15. $x=2$ and $y=6$
16. $x=1$ and $y=-1$
17. (a) Neither (b) Perpendicular
18. (a) $y=\frac{1}{3} x+\frac{7}{3}$ (b) $y=3$ (c) $d=2 \sqrt{10}$ (d) $(0,2)$
19. (a) 4 (b) 14 (c) $x=\frac{4}{5}$ (d) 17
20. Domain: \mathbb{R}, Range: \mathbb{R}, x-ints: $(-1,0),(2,0), y$-int: $(0,1)$, Positive: $(-\infty, 2]$, Negative: $[2, \infty)$,

Local max: $(1,2)$, Local min: $(-1,0)$
21. (a) $x=\frac{17}{13}$ (b) $x=4 \ln$ (7) \quad (c) $x=-2+\log _{2}(3)$
22. $\sin (\theta)=\frac{\sqrt{5}}{5} \sec (\theta)=\frac{\sqrt{5}}{2}$
23. $\theta=30^{\circ}$
24. $x=10 \sqrt{3}$

