016 Final, Fall 2014

1. [6] Evaluate the following expressions.
(a) $[1-(-23)] \div[(-2)-4]+(4)(-9)$
(b) $\frac{3}{2}-\frac{2}{5} \div \frac{-2}{3}+3\left(\frac{5}{6}+\frac{-3}{4}\right)$
(c) $\frac{-5^{2}+(-3)^{2}-(-6)+(2)(4)^{2}}{|10-3(2+4)|}$
2. [4] Expand and simplify the following algebraic expressions.
(a) $-(2 x y+7 y)+(5 x-3)(-x y+3 y)$
(b) $(2 \mathrm{x}+3)^{2}+8[(3-x)-(x+2)(x-2)]$
3. [6] Solve for x.
(a) $6 x+8=4[3 x-2-2(x+1)]$
(b) $\frac{x+2}{5}=\frac{x-6}{4}$
(c) $\frac{4}{3}(x-3)=5\left(\frac{1}{4} x+\frac{1}{3}\right)$
4. [4] Simplify. Your answers should have no negative exponents.
(a) $\left(\frac{75 a^{6} b c^{5}}{50 a^{2} b^{-2} c^{7}}\right)^{4}$
(b) $\left[x^{0}\left(2 \mathrm{x} y^{-3}\right)^{2} y\right]^{3}\left(-3 x^{-1} y^{3}\right)^{-2}$
5. [4] Factor completely.
(a) $4 x^{4}+8 x^{2}-12$
(b) $24 x^{2}+3 x^{5}$
6. [6] Solve by factoring.
(a) $3 x^{2}+5 x=2$
(b) $16 \mathrm{x}^{3}-x=0$
(c) $2 \mathrm{x}^{3}+x^{2}-18 \mathrm{x}-9=0$
7. [2] The store I bought my new shoes from marks up their products by 20%. If I paid $\$ 48$ for these shoes, how much did the store pay for them?
Selling Price $=($ Cost $)+($ Markup Rate $) \times($ Cost $)$
8. [2] My initial investment of $\$ 3000$ earned an interest of $\$ 1440$ after 4 years. What was the interest rate? (Recall: $I=$ Prt)
9. [8] Simplify.
(a) $-4 x^{2} z \sqrt{99 x^{3}} y^{12} z^{4}$
(b) $y^{2} \sqrt{\frac{32 \mathrm{x}^{7} z^{2}}{16 \mathrm{x}^{4} z^{2}}}$
(c) $-\sqrt{63}-\sqrt{50}+2 \sqrt{28}-5 \sqrt{72}$
(d) $(4 \sqrt{3}-\sqrt{2})(\sqrt{12}+3 \sqrt{2})$
10. [3] Solve for x or show that there is no solution. Check your answer.

$$
x=\sqrt{3-x}+1
$$

11. [3] Rationalize the denominator and simplify.
(a) $\frac{\sqrt{2}}{3 \sqrt{6}}$
(b) $\frac{\sqrt{3}}{2 \sqrt{3}-\sqrt{5}}$
12. [3] Using the Quadratic Formula, find the solution(s) to $4 \mathrm{x}^{2}+3 \mathrm{x}=1$.
13. [3] By completing the square, find the solution(s) to $x^{2}+6 x-31=0$.
14. [3] By taking square roots, find the solution(s) to $4(2 x+4)^{2}=32$.
15. [3] Solve the system by substitution.

$$
\begin{aligned}
& 5 x+4 y=4 \\
& 3 x+2 y=3
\end{aligned}
$$

16. [3] Solve the system by elimination.

$$
\begin{aligned}
& 3 x+6 y=1 \\
& 2 x+4 y=5
\end{aligned}
$$

17. [3] For the points $\mathrm{A}(-3,-12)$ and $\mathrm{B}(1,-$ 14):
(a) Find the distance between A and B.
(b) Find the midpoint of the line segment joining A and B .
18. [5] Find an equation for
(a) The line that passes through $(2,-1)$ and $(5,4)$.
(b) The line that passes through $(20,3)$ and is perpendicular to the line $y=5 \mathrm{x}-1$.
(c) The horizonal line through $(-2,4)$.
19. [5] For the line $2 x-9 y=-36$
(a) Find the intercepts.
(b) Find the slope.
(c) Sketch.
20. [5] Given $f(x)=-x^{2}-6 x+16$ and $g(x)=2-5 \mathrm{x}$, find the following:
(a) $f(-2)$
(b) The value(s) of x for which
$f(x)=0$.
(c) $f\left(\frac{1}{2}\right)-g\left(\frac{1}{5}\right)$
21. [5] Find the domain, range, intercepts, sign (where the function is positive/negative) and extrema (local \max / min) of the following function.

22. [6] Solve for x.
(a) $16^{2-3 x}=32^{5 x+1}$
(b) $3-\frac{9^{x+2}}{9^{7}}=2$
(c) $5-\left(3+e^{\frac{x}{2}}\right)=-1$
23. [3] Let θ be an acute angle of a right triangle. Given $\tan \theta=\frac{\sqrt{7}}{2}$, find the values of the other five trigonometric functions.
24. [2] Find the acute angle θ given $\csc \theta=\sqrt{2}$.

25. [3] Find \mathbf{x} and \mathbf{y}.

1.
(a) -40
(b) $47 / 20$
(c) $11 / 4$
2.
(a) $16 x y-16 y-5 x^{2} y$
(b) $-4 x^{2}+4 x+65$
3.
(a) $x=-12$
(b) $x=38$
(c) $x=68$
4.
(a) $\frac{81 a^{16} b^{12}}{16 c^{8}}$
(b) $\frac{64 x^{8}}{9 y^{21}}$
5.
(a) $4(x-1)(x+1)\left(x^{2}+3\right)$
(b) $3 \mathrm{x}^{2}(2+x)\left(4-2 \mathrm{x}+x^{2}\right)$
6.
(a) $x=-2, \frac{1}{3}$
(b) $x=0, \frac{1}{4},-\frac{1}{4}$
(c) $x=-\frac{1}{2}, 3,-3$
7. $C=\$ 40$
8. 12%
9.
(a) $-12 \mathrm{x}^{3} y^{6} z^{3} \sqrt{11 \mathrm{x}}$
(b) $x y^{2} \sqrt{2 \mathrm{x}}$
(c) $\sqrt{7}-35 \sqrt{2}$
(d) $18+10 \sqrt{6}$
10. $x=2$
11.
(a) $\frac{\sqrt{3}}{9}$
(b) $\frac{6+\sqrt{15}}{7}$
12. $x=-1, \frac{1}{4}$
13. $x=-3+2 \sqrt{10},-3-2 \sqrt{10}$
14. $x=-2+\sqrt{2,}-2-\sqrt{2}$
15. $x=2, y=-\frac{3}{2}$
16. no solution
17.
(a) $2 \sqrt{5}$
(b) $(-1,-13)$
18.
(a) $y=\frac{5}{3} x-\frac{13}{3}$
(b) $y=-\frac{1}{5} x+7$
(c) $y=4$
19.
(a) $(-18,0),(0,4)$
(b) $\frac{2}{9}$
(c)
20.
(a) 24
(b) $x=-8,2$
(c) $\frac{47}{4}$
21. Domain:] $-\infty, \infty$ [Range: [$-6.25, \infty$ [

Intercepts: $(-6,0),(4,0),(0,-6)$ Positive:
$]-\infty,-6[\cup] 4, \infty$ [Negative:]-6,4[
Extrema: minimum at $(-1,-6.25)$
22.
(a) $x=\frac{3}{37}$
(b) $x=5$
(c) $x=2 \ln 3$
23. $\sin \theta=\frac{\sqrt{77}}{11}, \cos \theta=\frac{2 \sqrt{11}}{11}, \tan \theta=\frac{\sqrt{7}}{2}$
$\csc \theta=\frac{\sqrt{77}}{7}, \quad \sec \theta=\frac{\sqrt{11}}{2}, \quad \cot \theta=\frac{2 \sqrt{7}}{7}$
24. $\theta=45$ degrees
25. $x=4 \sqrt{3,} y=4$

