1. [6] Evaluate the following expressions.
(a) $9-5\left(2^{3}-3^{0}\right)$
(b) $\frac{4}{2(1-4)} \div \frac{2(3-5)}{1-(-2)}$
(c) $\left|-2^{2}-6\right|-\left|(-2)^{2}-10\right|$
2. [4] Expand and simplify the following algebraic expressions.
(a) $\left(x^{3}+8\right)(6-2 \mathrm{x})-(x+3)^{2}$
(b) $(2 \mathrm{a}-3)[1-(4+b) a]-3 \mathrm{ab}$
3. [6] Solve for x.
(a) $2-(x+5)=1-4 \mathrm{x}$
(b) $\frac{2}{3} x+2=\frac{1}{2}\left(\frac{5}{3}-\frac{x}{2}\right)$
(c) $\frac{4}{3}=\frac{3}{x+2}$
4. [4] Simplify. Your answers should have no negative exponents.
(a) $\left(\frac{15 a^{-1} b^{3}}{9 a^{-2} b^{-2}}\right)^{-2}$
(b) $\left(-2 \mathrm{x}^{2} y^{-3}\right)^{2}\left(3 x^{-1} y\right)$
5. [4] Factor completely.
(a) $4 x^{3}+22 x^{2}-12 x$
(b) $8 x^{7}-64 x^{4}$
6. [6] Solve by factoring.
(a) $x^{2}-77=-4 x$
(b) $x^{4}-5 x^{2}+4=0$
(c) $x^{3}-14 \mathrm{x}+10=2(x+5)$
7. [3] My local pet food store marks up its products by 25%. If I paid $\$ 65$ for a bag of dog food, what is the store's cost?
8. [2] My initial investment of $\$ 5000$ earned an interest of $\$ 600$ after 4 years. What was the interest rate? (Recall:

$$
I=\operatorname{Prt} \quad)
$$

9. [8] Simplify.
(a) $-x y^{2} z^{3} \sqrt{144 x^{4} y^{8} z^{5}}$
(b) $\frac{y \sqrt{32 \mathrm{x}^{7} y^{3} z^{8}}}{z^{2} \sqrt{x^{7} y^{9} z^{3}}}$
(c) $2 \sqrt{121}-\sqrt{28}+3 \sqrt{63}-\sqrt{81}$
(d) $(\sqrt{3}-5 \sqrt{8})(2 \sqrt{8}+\sqrt{3})$
10. [3] Solve for x or show that there is no solution. Check your answer.

$$
x=\sqrt{x+44}-2
$$

11. [4] Rationalize the denominator and simplify.
(a) $\frac{\sqrt{10}}{4 \sqrt{5}}$
(b) $\frac{\sqrt{16}}{\sqrt{7}-\sqrt{3}}$
12. [3] Using the Quadratic Formula, find the solution(s) to $2 \mathrm{x}^{2}+3 \mathrm{x}-1=0$.
13. [3] By completing the square, find the solution(s) to $x^{2}-8 \mathrm{x}-20=0$.
14. [3] By taking square roots, find the solution(s) to $-2(2 x-3)^{2}+18=0$.
15. [3] Solve the system by substitution.

$$
\begin{aligned}
& 5 x+6 y=1 \\
& 2 x+3 y=1
\end{aligned}
$$

16. [3] Solve the system by elimination.

$$
\begin{array}{r}
3 x+4 y=-8 \\
-6 x-7 y=14
\end{array}
$$

17. [3] For the points $A(1,-11)$ and $B(5,-$ 17):
(a) Find the distance between A and B.
(b) Find the midpoint of the line segment joining A and B .
18. [5]
(a) Find an equation for the line that passes through $(-3,-1)$ and $(2,-4)$.
(b) What is the slope of this line?
(c) What is the y-intercept of this line?
(d) What is the x-intercept of this line?
19. [4]
(a) Sketch the lines $y=-2 x+4$ and

$$
y=\frac{1}{2} x+3
$$

(b) Find the point of intersection of the two lines.
(c) Determine whether the lines are parallel, perpendicular, or neither. Explain your answer.
20. [5] Given $f(x)=x^{2}+5 \mathrm{x}$ and $g(x)=2-5 \mathrm{x}$, find the following:
(a) $f\left(\frac{1}{2}\right)$
(b) The value(s) of x for which $f(x)=0$.
(c) $f(-2)-g\left(\frac{1}{3}\right)$
21. [4] Find the domain, range, intercepts, and extrema (local max $/ \mathrm{min}$) of the following function.

22. [6] Solve for x.
(a) $9^{2-x}=27^{x-2}$
(b) $3=2+\frac{4^{x+1}}{4^{2}}$
(c) $5=-1+2\left(1+e^{\frac{x}{3}}\right)$
23. [3] Let θ be an acute angle of a right triangle. Given $\csc \theta=\sqrt{5}$, find the values of the other five trigonometric functions.
24. [2] Find the acute angle θ given $\sec \theta=\frac{2}{\sqrt{3}}$.
25. [3] Find \mathbf{y} and \mathbf{r}.

1.
(a) -26
(b) $1 / 2$
(c) 4
2.
(a) $-2 \mathrm{x}^{4}+6 \mathrm{x}^{3}-x^{2}-22 \mathrm{x}+39$
(b) $-8 \mathrm{a}^{2}-2 \mathrm{a}^{2} b+14 \mathrm{a}-3$
3.
(a) $4 / 3$
(b) $-14 / 11$
(c) $1 / 4$
4.
(a) $\frac{9}{25 a^{2} b^{10}}$
(b) $\frac{12 \mathrm{x}^{3}}{y^{5}}$
5.
(a) $2 \mathrm{x}(x+6)(2 \mathrm{x}-1)$
(b) $8 \mathrm{x}^{4}(x-2)\left(x^{2}+2 \mathrm{x}+4\right)$
6.
(a) $x=-11,7$
(b) $x=2,-2,1,-1$
(c) $x=0, x=4, x=-4$
7. $\$ 52$
8. 3\%
9.
(a) $-12 \mathrm{x}^{3} y^{6} z^{5} \sqrt{z}$
(b) $\frac{4}{y^{2}} \sqrt{2 z}$
(c) $13+7 \sqrt{7}$
(d) $-6 \sqrt{6}-77$
10. $x=5$ is the only solution.
11.
(a) $\frac{\sqrt{2}}{4}$
(b) $\sqrt{7}+\sqrt{3}$
12. $\frac{-3 \pm \sqrt{17}}{4}$
13. $x=-2,10$
14. $x=0,3$
15. $x=-1, y=1$
16. $x=0, y=-2$
17.
(a) $2 \sqrt{13}$
(b) $(3,-14)$
18.
(a) $y=-\frac{3}{5} x-\frac{14}{5}$
(b) $-\frac{3}{5}$
(c) $\left(0-\frac{14}{5}\right)$
(d) $x=-\frac{14}{3}$
19.
(a)
(b) $x=\frac{2}{5}, y=\frac{16}{5}$
(c) perpendicular
20.
(a) $11 / 4$
(b) $x=0, x=-5$
(c) $-19 / 3$
21. Domain: R, Range: R, x-ints: $x=-4,0,2$, y-ints: $y=0$, local max:
$(-2.4,17)$, local min: $(1.1,-5)$
(a) $x=2$
(b) $x=1$
(c) $x=3 \ln 2$
23. $\quad \sin \theta=\frac{\sqrt{5}}{5} \quad \cos \theta=\frac{2 \sqrt{5}}{5}$ $\tan \theta=\frac{1}{2} \quad \csc \theta=\sqrt{5} \quad \sec \theta=\frac{\sqrt{5}}{2}$ $\cot \theta=2$
24. $\theta=30$ degrees
25. $y=7 \sqrt{3}, r=14$

