1. Evaluate each of the following expressions.
a. $10+5^{0}-3\left(5+(-2)^{2}\right)$
b. $\frac{5}{3+4} \div(3+7)+\frac{2}{3}$
c. $5 \times\left|\frac{1}{2}-\frac{11}{3}\right|-\left|\frac{3}{5+3}\right|$
2. Simplify each of the following.
a. $(3 x+5)(3 x-5)+\left(x+\frac{1}{5}(10 x-35)\right)^{2}$
b. $5 x^{3}+12 x^{2}-(x-3)^{3}$
3. Solve each equation for x.
a. $2 x^{2}+2 x(2 x-7)-10+16 x=5-x+3\left(2 x^{2}+7\right)-12$
b. $\frac{1}{4}\left(\frac{4}{6}-\frac{8}{3} x\right)=\frac{1}{5} x-\frac{7}{2}$
4. Simplify each of the following expressions and express the result without using negative exponents. Assume that each variable is not zero.
a. $\left(15 x^{3} y^{4}\right)^{2} \cdot \frac{\left(35 x^{2} z^{-3}\right)^{-3}}{y}$
b. $\left(\frac{7 a^{3} b^{4}}{3 a^{2} b^{3} c^{-2}}\right)^{2} \cdot \frac{3 a b}{b^{0}} \cdot c^{2}$
5. Factor each polynomial completely.
a. $x^{4}-5 x^{2}-24$
b. $5 z^{5}+40 z^{2} y^{6}$
6. Solve each equation by factoring.
a. $3 x^{2}-14 x=5$
b. $3 x^{2}-5 x+10=70-2 x$
c. $x^{3}+23=5 x^{2}+4 x+3$
7. Simplify each of the following expressions. Assume that $x, y, z>0$.
a. $x^{2} y^{-1} \sqrt{32 x^{5} y^{4} z^{6}}$
b. $\frac{-4 \sqrt{72 x^{2} y^{3} z^{6}}}{y \sqrt{18 x^{5} y^{3} z}}$
c. $\sqrt{28}-3 \sqrt{125}+10 \sqrt{63}-4 \sqrt{45}+\sqrt{50}$
d. $(5 \sqrt{11}+2 \sqrt{3})(\sqrt{11}-5 \sqrt{3})$
8. Rationalize the denominator of each expression and simplify the result.
a. $\frac{7 \sqrt{6}}{\sqrt{10}}$
b. $\frac{6 \sqrt{3}}{\sqrt{30}+2 \sqrt{7}}$
9. Solve the equation $\sqrt{2 x^{2}-7}+x=3$ for x, or show that the equation has no solutions.
10. By taking square roots, find all solutions of the equation $\frac{2}{3}(x+3)^{2}+20=-16$.
11. By completing the square, find all solutions of the equation $x^{2}-10=3 x$.
12. Use the Quadratic Formula to find all solutions of the equation $-9 x^{2}+6 x-1=0$.
13. The company \mathbb{R} eal Exams gave a 42% discount on algebra exams, and the instructors bought this exam for $\$ 87$. What was the original cost of this exam?
(Hint: Sale Price $=$ Original Price - Discount Rate \times Original Price. $)$
14. If a box of secret math supplies has an area of twenty-four square metres and is two metres longer than it is wide, what are the dimensions of the box?
15. Solve the following linear system by substitution.

$$
\begin{aligned}
& 3 x+5 y=4 \\
& 2 x-4 y=10
\end{aligned}
$$

16. Solve the following system by elimination.

$$
\begin{aligned}
2 x+3 y & =21 \\
-3 x-4 y & =-31
\end{aligned}
$$

17. Consider the line L with the equation $3 x-y=15$.
a. Find the x-intercept of L and the and y-intercept of L.
b. Find the slope of L.
c. Sketch the graph of L.
d. Are L and $y=3 x+3$ parallel, perpendicular or neither? Explain your answer.
18. a. Find the distance between the points $(6,3)$ and $(4,-5)$.
b. Find the midpoint of the line segment between the points $(6,3)$ and $(4,-5)$.
c. Give an equation of:
i. the line that passes through $(6,3)$ and $(4,-5)$;
ii. the line that passes through $(6,3)$ and is perpendicular to $y=3 x+10$;
iii. the line that passes through $(4,-5)$ and is parallel to $y=-5 x$.
iv. the line passes through $(6,3)$ and is perpendicular to $y=2$.
19. Give the domain, range, intercepts, sign (where f is positive/negative) and extrema (local max/min) of the function f whose graph is displayed below.

20. Let $f(x)=-x^{2}+5 x-1$.
a. Evaluate $f(0)$.
b. Evaluate $f(2)$.
c. Evaluate $f\left(\frac{1}{3}\right)$.
d. For which values of h is $f(2+h)=f(2)+f(h)$?
21. Given that θ is an acute angle in a right triangle such that $\tan \theta=\frac{8}{3}$, find the exact values of $\sin \theta$, $\cos \theta, \cot \theta, \sec \theta$ and $\csc \theta$.
22. Given $\csc \theta=\sqrt{2}$, find the acute angle θ.
23. Find the exact values of x and y in the triangle below.
24. Solve each equation for x.
a. $5^{2+x}=125$

b. $1=\frac{9^{x}}{3^{5}}$
c. $2\left(e^{2 x}+2\right)=7$

Answers

1. a. -16
b. $\frac{31}{42}$
c. $\frac{371}{24}$
2. a. $18 x^{2}-42 x+24$
b. $4 x^{3}+21 x^{2}-27 x+27$
3. a. $x=8$
b. $x=\frac{55}{13}$
4. a. $\frac{3^{2} y^{7} z^{9}}{7^{3} 5}$
b. $\frac{7^{2} a^{3} b^{3} c^{6}}{3}$
5. a. $\left(x^{2}-8\right)\left(x^{2}+3\right)$ OR $(x-2 \sqrt{2})(x+2 \sqrt{2})\left(x^{2}+3\right)$
b. $5 z^{2}\left(z+2 y^{2}\right)\left(z^{2}-2 y^{2} z+4 y^{4}\right)$
6. a. $x=\frac{-1}{3}, x=5$
b. $x=-4, x=5$
c. $x=-2, x=2, x=5$
7. a. $4 y z^{3} \sqrt{2 x^{9}}$
b. $\frac{-8 \sqrt{z^{5}}}{y \sqrt{x^{3}}}$
c. $32 \sqrt{7}-27 \sqrt{5}+5 \sqrt{2}$
d. $25-23 \sqrt{33}$
8. a. $\frac{7 \sqrt{15}}{5}$
b. $9 \sqrt{20}-6 \sqrt{21}$
9. $x=-8, x=2$
10. No solutions
11. $x=5, x=2$
12. $x=\frac{1}{3}$
13. Original cost is $\$ 150$
14. The box is 4×6
15. $(3,-1)$
16. $(9,1)$
17. a. x-intercept $(5,0)$ and y-intercept $(0,-15)$
b. 3
c. Draw a line connecting both intercepts (is the easiest way)
d. Parallel, they have the same slope
18. a. $2 \sqrt{17}$
b. $(5,-1)$
c. i. $y=4 x-21$
ii. $y=\frac{-1}{3} x+5$
iii. $y=-5 x+15$
iv. $x=6$
19. Domain: $x \in \mathbb{R}$, Range: $y \in \mathbb{R}, y \geq-4$, Intercepts: $(-3,0),(-1,0),(2,0)$ and $(0,1)$, Sign: Positive $x<-3,-1<x<2, x>2$ Negative $-3<x<-1$, Local Extrema: local mins $(-2,-4),(2,0)$ and local max $(0,1)$.
20. a. $f(0)=-1$
b. $f(2)=5$
c. $f\left(\frac{1}{3}\right)=\frac{5}{9}$
d. $h=\frac{1}{4}$
21. $\sin \theta=\frac{8 \sqrt{73}}{73}, \cos \theta=\frac{3 \sqrt{73}}{73}, \tan \theta=\frac{8}{3}, \csc \theta=\frac{\sqrt{73}}{8}, \sec \theta=\frac{\sqrt{73}}{3}, \cot \theta=\frac{3}{8}$,
22. $\theta=45^{\circ}$
23. $y=\frac{23}{2}$
24.

a. $x=1$
b. $x=\frac{5}{2}$
c. $x=\frac{\ln \left(\frac{3}{2}\right)}{2}$

