1. (5 points) Evaluate the following expressions.

(a)
$$\frac{(6+(-2))^2-3}{0-4} \div \frac{3}{8} + 11^0$$

(b)
$$10 - (-3)^{-2-(-4)} |3 + 7 \times (-1)|$$

2. (3 points) Expand and simplify the following expression.

$$(2x-5)^2 - 6[x(x^2-4) - x^2 + 3x]$$

3. (6 points) Solve for x in the following equations.

(a)
$$3[x-4(2x-3x-2)-1]-11=2+5x$$

(b)
$$2 - \frac{5x-1}{6} = \frac{-x-1}{3}$$

4. (4 points) Simpify the following expression and present the result without any negative exponents. You may assume that all variables are positive.

$$\frac{12(3abc^3)^{-2}}{a^7b^{-9}c^0} \cdot (b^{-1}c)^{-4}$$

5. (3 points) Fully factor the following expression.

$$12x^3 + 8x^2 - 27x - 18$$

6. (8 points) Solve for x by **factoring**.

(a)
$$x^3 - 6x^2 - 16x = 0$$

(b)
$$(3x-2)(x+4) = -11$$

7. (3 points) Solve for x by using the quadratic formula.

$$-x^2 + 4x - 1 = 0$$

8. (7 points) Simplify the following expressions. You may assume that all variables are positive.

(a)
$$2\sqrt{2}(5\sqrt{2}-\sqrt{24})+7\sqrt{3}$$

(b)
$$xy^2\sqrt{\frac{20x^7y^{-12}}{x^4y^{20}}}$$

9. (4 points) Rationalize the denominator and simplify.

(a)
$$\frac{4a\sqrt{5}}{\sqrt{10a}}$$

(b)
$$\frac{\sqrt{6}}{6+3\sqrt{3}}$$

10. (9 points) Solve for x.

(a)
$$1 - 4\sqrt{15 - 2x} = -19$$

- (b) $3 + \sqrt{4x 7} = x$
- 11. (8 points) Give an equation for each of the lines described.
 - (a) The line passing through the points (2,8) and (-3,33).
 - (b) The line perpendicular to 4x + 5y = 11 with a y-intercept of -14.
 - (c) The vertical line through the point (117, 481).
- 12. (3 points) Solve the following system of equations by substitution.

$$\begin{cases} 2x + 6y = 16 \\ 3x - 4y = -15 \end{cases}$$

13. (3 points) Solve the following system of equations by elimination.

$$\begin{cases} 5x - 4y = -25 \\ -7x + 2y = -1 \end{cases}$$

- **14.** (4 points) Consider the points A(-4,5) and B(-1,-1).
 - (a) What distance separates the points A and B? Remember to simplify your answer.
 - (b) Give the coordinates of the midpoint of the line segment \overline{AB} .
- 15. (7 points) Solve for x in the following equations.
 - (a) $4^{6x-2} = \left(\frac{1}{2}\right)^{2x+3}$
 - (b) $4(5^{8x-11}) 4 = 20$
- **16.** (4 points) Evaluate the following expressions.
 - (a) $\log_2(32)$
 - (b) $\ln(e^4e^3)$
 - (c) $\log_{2387}(1)$
 - (d) $\log_5\left(\frac{1}{25}\right)$
- 17. (4 points) Use the image below to find simplified values for
 - (a) $\sec \theta$
 - (b) $\csc \theta$

18. (4 points) Evaluate the expression and simplify.

$$\sec(30^{\circ}) \times [\tan(45^{\circ}) + \cos(60^{\circ})]$$

19. (5 points) Let f(x) be the function illustrated in the graph below.

- (a) Give the domain of f(x).
- (b) Give the range of f(x).
- (c) Over which interval(s) is f(x) increasing?
- (d) Over which interval(s) is f(x) positive?
- (e) List the relative maxima of f(x).
- **20.** (6 points) Let $f(x) = \frac{x}{x^2+2}$, let $g(x) = \sqrt{2x+1}$, and let $h(x) = x \cdot g(x^2)$. Find simplified expressions for the following:
 - (a) f(4)
 - (b) g(x+t)
 - (c) f(q(12))
 - (d) h(-2)

ANSWERS

1. (a)
$$\frac{-23}{3}$$
 (b) -26
2. $-6x^3 + 10x^2 - 14x + 25$

2.
$$-6x^3 + 10x^2 - 14x + 25$$

3. (a)
$$\frac{-4}{5}$$
 (b) 5

4.
$$\frac{4b^{11}}{3a^9c^{10}}$$

3. (a)
$$\frac{-4}{5}$$
 (b) 5
4. $\frac{4b^{11}}{3a^9c^{10}}$
5. $(2x+3)(2x-3)(3x+2)$

6. (a)
$$x = -2$$
, 0, 8 (b) $x = -3$, $\frac{-1}{3}$ 7. $x = 2 \pm \sqrt{3}$

7.
$$x = 2 \pm \sqrt{3}$$

- 8. (a) $20 \sqrt{3}$ (b) $\frac{2x^2\sqrt{5x}}{y^{14}}$ 9. (a) $2\sqrt{2a}$ (b) $\frac{2\sqrt{6} 3\sqrt{2}}{3}$ 10. (a) x = -5 (b) x = 8
- 11. (a) y = -5x + 18 (b) $y = \frac{5}{4}x 14$ (c) x = 117 12. x = -1, y = 3
- 13. x = 3, y = 10

- 16. (a) $3\sqrt{5}$ (b) $\left(\frac{-5}{2}, 2\right)$ 15. (a) $x = \frac{1}{14}$ (b) $x = \frac{\log_5(6) + 11}{8}$ 16. (a) 5 (b) 7 (c) 0 (d) -2
- (b) $\frac{7\sqrt{6}}{12}$ 17. (a) $\frac{7}{5}$
- 18. $\sqrt{3}$
- 19. (a) [-7,4] (b) [-3,3] (c) $(-7,-6) \cup (-2,3)$ (d) $(-7,-5) \cup (1,4)$ (e) (-6,1) and (3,3) 20. (a) $\frac{2}{9}$ (b) $\sqrt{2x+2t+1}$ (c) $\frac{5}{27}$ (d) -6