(6) 1. Given the graph of $f$ below, determine each of the following. Use $\infty,-\infty$ or "does not exist" (DNE) where appropriate.

(j) List all $x$-values where the function is discontinuous and name the types of discontinuity.
(k) List all $x$-values where the function is continuous but not differentiable. Justify your answer.
(21)
2. Evaluate the following limits. Use $\infty,-\infty$, and dne as appropriate.
(a) $\lim _{x \rightarrow 3} \frac{\frac{3}{7}-\frac{x}{3 x-2}}{x-3}$
(b) $\lim _{x \rightarrow 4} \frac{\sqrt{3 x}-\sqrt{4 x-4}}{2 x-8}$
(c) $\lim _{x \rightarrow 10} \frac{x^{2}+x-110}{x+11}$
(d) $\lim _{x \rightarrow 1} \frac{5 x^{2}-5}{15 x^{2}-18 x+3}$
(e) $\lim _{x \rightarrow-4} \frac{x^{2}-3 x-28}{(x+4)^{3}}$
(f) $\lim _{x \rightarrow-\infty} \frac{\left(x^{2}-3 x^{3}\right)^{2}(2 x+1)}{\left(2 x^{2}+1\right)^{2}(3 x+4)^{3}}$
(g) $\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{2 x^{3}-4 x^{2}+3 x-6}$
3. Answer the following questions with True or False. Justify your answer.
(a) A function can have AT MOST two horizontal asymptotes.
(b) A function cannot intersect its vertical asymptote.
4. Use the definition of continuity to determine the points of discontinuity of the following function, $f(x)$. Name the type of discontinuity.

$$
f(x)=\left\{\begin{array}{lr}
\frac{3 x+12}{x^{2}+2 x-8} & : x \leq-2 \\
x^{2} & :-2<x<2 \\
\frac{4}{3-x} & : x \geq 2
\end{array}\right.
$$

(3) 5. Find the value(s) of $k$ for which the function $g(x)$ is continuous on $\mathbb{R}$.

$$
g(x)= \begin{cases}k^{2}+2 x & : x<-1  \tag{3}\\ -k x & : x \geq-1\end{cases}
$$

6. 

(a) State the limit definition of the derivative.
(b) Use this definition to calculate the derivative of $g(x)=\sqrt{3-2 x}$
7. Find the derivative of each of the following functions. Do not simplify your answers.
(a) $y=\frac{3}{2 x^{6}}-\sqrt[3]{x^{4}}+\log _{8} x+\pi$
(b) $g(x)=\cot \left(x e^{x}\right)$
(c) $f(x)=\sin ^{2}\left(x^{3}-7^{x}\right)$
(d) $y=\frac{e^{9 x}+1}{\ln \left(6 x^{3}-3 x^{5}\right)-3}$
(e) $y=\sqrt[3]{\sec \left(2 x^{3}+4\right)+6}$
(f) $(x+3 y)^{2}=x^{2}+e^{2 y}$
(g) $y=(\cos x+4 x)^{\sqrt{x}}$
8. Use logarithmic differentiation to find the derivative of $f(x)=\frac{5\left(2^{x}-6 x^{3}\right)^{5} \ln x}{7(\tan x) \sqrt[4]{\left(3 x^{2}+2 x+1\right)^{5}}}$
9. Given $\frac{-4 x^{2}}{y}=x \ln y-y$
(a) Find $y^{\prime}$
(b) Find the equation of the tangent line at the point $(x, y)=\left(\frac{1}{2}, 1\right)$
(3) 10. Find both $y^{\prime}$ and $y^{\prime \prime}$ for $y^{2}=x y+8$
(4) 11. Find the value(s) where the tangent line to $g(x)=\left(x^{2}+4\right)^{3}\left(x^{2}-10\right)^{4}$ is horizontal.
(3) 12. Find all critical numbers of the function $h(x)=x \sqrt{1+x}$.
(3) 13. Find the absolute extrema of the function $g(x)=\frac{x^{3}+4}{x^{2}}$ on the interval $[1,4]$
14. Consider

$$
\begin{equation*}
f(x)=\frac{x}{(2 x+1)^{2}}, f^{\prime}(x)=\frac{-2 x+1}{(2 x+1)^{3}}, \text { and } f^{\prime \prime \prime}(x)=\frac{8(x-1)}{(2 x+1)^{4}} \tag{10}
\end{equation*}
$$

Determine the following then neatly sketch a graph of $f(x)$ on the following page.
(a) all $x$ - and $y$ - intercepts
(b) all vertical and horizontal asymptotes
(c) the intervals on which $f(x)$ is increasing and decreasing
(d) all local (relative) maxima and minima
(e) the intervals on which $f(x)$ is concave up and concave down
(f) any points of inflection
(g) sketch the curve $y=f(x)$ on the following page
15. Canadian Apparel prints orange T-shirts featuring the basic differentiation rules. It costs $\$ 2000$ to set up the printer and $\$ 12$ to produce and print a T-shirt, that is, the cost function of producing $x$ T-shirts is $C(x)=2000+12 x$.
(a) Find average cost function.
(b) What happens to the average cost as the number of T-shirts gets large (that is, as $x \rightarrow \infty$ )?
(c) Find the marginal average cost at the production level of 300 T -shirts and interpret the result.
16. A group of sadistic calculus teachers decided to lock up some adorable unicorns in an unusual room, because reasons. The room is a rectangle with a isosceles triangle on top, where the base of the rectangle (and triangle) is $8 x$ and the sides of the triangle are $5 x$.


What is the maximum area for the room, if the total length of the walls of the room add up to 2640 m ?
(4) 17. The demand for a mini samurai robot unicorn is given by $p^{2}+4 x=72081$.
(a) Find the elasticity of demand function, $\eta$, in terms of $p$.
(b) By calculating the value of $\eta$ when the price is $p=\$ 9$ (and $x=18000$ ), determine what will happen to quantity demanded if the price is increased by $6 \%$.
(c) Does the revenue increase or decrease if the price increase in (b) is approved?

## Answers

1. a) -1 b) 1 c) -3 d) 2 e) -2 f) $-\infty$ g) 2 h)dne i)dne
j) -3 : jump, -2 : removable, 2 : infinite
k) $-1,1$ : corner, abrupt change in slope
2. a) $\frac{2}{49}$ b) $\frac{-1}{4 \sqrt{12}}=\frac{-1}{8 \sqrt{3}}$ c) 0 d) $\frac{5}{6}$ e) $-\infty$ f) $\frac{1}{6}$ g) $\frac{1}{11}$
3. a)True. There can be one on the left as $x$ approaches $-\infty$ and one on the right at $x$ approaches $\infty$.
b) False. It is possible for there to be exactly one point ON the vertical asymptote, but the function cannot intersect it.
4. Removable discontinuity at $x=-4$, infinite discontinuity at $x=3$, and a jump discontinuity at $x=-2$.
5. $k=-1,2$
6. (a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
(b) $f^{\prime}(x)=\frac{-1}{\sqrt{3-2 x}}$
7. (a) $y^{\prime}=-9 x^{-7}-\frac{4}{3} x^{1 / 3}+\frac{1}{x \ln 8}$
(b) $g^{\prime}(x)=-\csc ^{2}\left(x e^{x}\right)\left(e^{x}+x e^{x}\right)$
(c) $f^{\prime}(x)=2 \sin \left(x^{3}-7^{x}\right) \cos \left(x^{3}-7^{x}\right)\left(3 x^{2}-7^{x} \ln 7\right)$
(d) $y^{\prime}=\frac{\left(9 e^{9 x}\right)\left[\ln \left(6 x^{3}-3 x^{5}\right)-3\right]-\left(e^{9 x}+1\right)\left(\frac{18 x^{2}-15 x^{4}}{6 x^{3}-3 x^{5}}\right)}{\left[\ln \left(6 x^{3}-3 x^{5}\right)-3\right]^{2}}$
(e) $y^{\prime}=\frac{1}{3}\left[\sec \left(2 x^{3}+4\right)+6\right]^{-2 / 3} \sec \left(2 x^{3}+4\right) \tan \left(2 x^{3}+4\right)\left(6 x^{2}\right)$
(f) $y^{\prime}=\frac{2 x-2(x+3 y)}{6(x+3 y)-2 e^{2 y}}=\frac{-3 y}{3 x+9 y-e^{2 y}}$
(g) $y^{\prime}=(\cos x+4 x)^{\sqrt{x}}\left(\frac{1}{2 \sqrt{x}} \ln (\cos x+4 x)+\sqrt{x}\left(\frac{-\sin x+4}{\cos x+4 x}\right)\right)$
8. $f^{\prime}(x)=\left(\frac{5\left(2^{x}-6 x^{3}\right)^{5} \ln x}{7(\tan x) \sqrt[4]{\left(3 x^{2}+2 x+1\right)^{5}}}\right)\left(\frac{5\left(2^{x} \ln 2-18 x^{2}\right)}{2^{x}-6 x^{3}}+\frac{1}{x \ln x}-\frac{\sec ^{2} x}{\tan x}-\frac{5(6 x+2)}{4\left(3 x^{2}+2 x+1\right)}\right)$
9. a) $y^{\prime}=\frac{y^{2} \ln y+8 x y}{4 x^{2}-x y+y^{2}}$ b) $y=\frac{8}{3} x-\frac{1}{3}$
10. $y^{\prime}=\frac{y}{2 y-x}$ and $y^{\prime \prime}=\frac{-2 x y+2 y^{2}}{(2 y-x)^{3}}$
11. The tangent line is horizontal with $x= \pm \sqrt{10}, x= \pm \sqrt{2}$, and $x=0$.
12. $x=\frac{-2}{3}$ and $x=-1$
13. $g(x)$ has an absolute minimum at $(2,3)$ and an absolute maximum at $(1,5)$
14. (a) Both $x$ - and $y$-intercept at $(0,0)$.
(b) Vertical asymptote at $x=-\frac{1}{2}$, horizontal asymptote at $y=0: y \rightarrow 0$ as $x \rightarrow \pm \infty$
(c) Increasing on $\left(-\frac{1}{2}, \frac{1}{2}\right)$ and decreasing on $\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$
(d) Local max at $\left(\frac{1}{2}, \frac{1}{8}\right)$
(e) Concave down on $\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, 1\right)$ and concave up on $(1, \infty)$
(f) Inflection point at $\left(1, \frac{1}{9}\right)$.
15. (a) $\overline{C(x)}=\frac{2000}{x}+12$
(b) $\lim _{x \rightarrow \infty} \overline{C(x)}=12$, so average cost approaches $\$ 12$
(c) Marginal average cost at 300 is $\approx-\$ 0.02$
16. Maximum area is $464,640 m^{2}$ and is achieved when $x=88 m$ and $y=528 m$.
17. (a) $\eta=\frac{-2 p^{2}}{72081-p^{2}}$
(b) Demand will increase by $.00675 \%$
(c) Inelastic, so in this case, revenue will increase.
