- 4 3 $\mathbf{2}$ 1 -3 -2 -1 $\mathbf{2}$ 3 -5 $\mathbf{5}$ -6 -4 1 4 6 (a) f(-4) =(b) f(5) =(c) $\lim_{x \to -4} f(x) =$ (d) $\lim_{x \to 2} f(x) =$ (e) $\lim_{x \to 4^{-}} f(x) =$ (f) $\lim_{x \to 4} f(x) =$ (g) $\lim_{x \to 5^+} f(x) =$ (h) $\lim_{x \to -\infty} f(x) =$ (i) $\lim_{x \to \infty} f(x) =$ (j) f'(6) =(k) $\lim_{x \to 2} (f(x) + 2x) =$
- 1. Given the graph of f below, determine each of the following. Use ∞ , $-\infty$ or "does not exist" (DNE) where appropriate.

- (l) At what x values is the graph of f(x) not differentiable? Provide an explanation for each x value.
- **2.** Evaluate the following limits.
 - (a) $\lim_{x \to -1} \frac{x+1}{\sqrt{x+5}-2}$ (b) $\lim_{w \to 2^+} \frac{|2-w|}{3w^2 - 5w - 2}$ (c) $\lim_{x \to 5^-} \frac{x^2 - 3x - 10}{x^2 - 10x + 25}$ (d) $\lim_{x \to \infty} \frac{2x^2(x-5)^2}{3(x+1)(2x-5)^3}$
- **3.** Find the values of A and B such that g(x) has a horizontal asymptote of y = 3 and a vertical asymptote of x = 5. $Ax^2 + 3x + 10$

$$g(x) = \frac{Ax^2 + 3x + 10}{2x(x - B)}$$

4. Determine where h(x) is **discontinuous** using the definition of continuity.

$$h(x) = \begin{cases} \frac{x+9}{(x-2)(x+4)} & x \le 1\\ -2 & 1 < x < 8\\ \sqrt{3x+1} & 8 \le x \end{cases}$$

- 5. Complete the following sentences with one of the words MUST, MIGHT, or CANNOT, as appropriate:
 - (a) If $f(x) = \frac{P(x)}{Q(x)}$ and Q(2) = 0 then f(x) have a vertical asymptote of x = 2.
 - (b) A function f(x) _____ have 3 different horizontal asymptotes.
 - (c) A function f(x) _____ have 3 different vertical asymptotes.

6. Given $f(x) = \frac{5}{x+1}$

- (a) Use the **definition of the derivative** to find f'(x).
- (b) Find the slope of the tangent line of f at x = 3.
- 7. Find y' for each of the following. Do not simplify your answers.

(a)
$$y = \frac{5x^2}{3} + \log_5(x) - \sec(2x) + \frac{2}{\sqrt[7]{x}} + \pi^{512+e}$$

(b) $y = 5xe^{2x} + \sqrt{\tan(x)}$
(c) $y = (1 + \sqrt{x})^{3x}$
(d) $y = \frac{5^{3x}}{\cos(2x)}$
(e) $y = \sin\left(\ln(x^2 + x) - 7x\right)$
(f) $y = \ln\left(\frac{(2x+4)^3e^{4x}}{\cot^5(x)}\right)$

8. Find the 2nd derivative of $y = \frac{6x^4 + 5x + 4 + 2x^3e^x}{2x}$.

- **9.** Find the 2019th derivative of $y = \sin(2x+1) + 5x^6 + 20x^{100}$.
- 10. Find the equation of the tangent line to the curve $(x + y)^2 = 7x 3xy$ at the point (1,1).
- 11. Use the second derivative test to find the local extrema of $g(x) = 3x^4 + 8x^3 + 6x^2 1$. If the test fails, simply state this.
- **12.** If $f(x) = 24x^{1/3} 3x^{4/3}$.
 - (a) Find both absolute extrema (if they exist) for f(x) in the interval [-1,2]
 - (b) What (if anything) about your answer in part a would change if the interval was (-1,2) instead?
- **13.** Given that $F(x) = \frac{(x+2)^2}{(x-2)^2}$, $F'(x) = \frac{-8x-16}{(x-2)^3}$, and $F''(x) = \frac{16x+64}{(x-2)^4}$.

Determine the domain of F, all asymptotes, all intercepts, the intervals on which F is increasing and decreasing, and on which F is concave up and concave down, as well as all local extrema and the inflection points of F. Then sketch F.

- 14. The JAC foundation is planning to raise money by holding a dinner gala in the new art installation. When tickets are sold at \$40 per plate, 60 guests attend. For each decrease in price of \$1 per plate, five more guests will attend.
 - (a) What ticket price will maximize the funds raised by this event?
 - (b) If they are hoping to raise \$4000, will that price be enough to meet their goal?

15. You are tasked with designing the new John Abbott 2D art installation inspired by a Tetris L block. The goal is to use the smallest amount of material possible, since it'll sit on a platform you do not need to construct the base. Minimize the perimeter (excluding the base) of the following shape if it has an area of 108.

- 16. Assume that the demand equation of a product is $x = -p^2 + p + 35$.
 - (a) Find the price elasticity of demand function.
 - (b) When the price is \$ 5, what will happen to the quantity demanded if the price increases by 2 %?
 - (c) If the price is instead set at \$ 2, should the price be increased or decreased in order to increase revenue? Explain.

ANSWERS:

1. Graph provided

(a) 4	(b) dne
(c) 2	(d) 1
(e) 1	(f) dne
(g) ∞	(h) 3
(i) ∞	(j) 0

- (k) 5
- (l) x = -4 discriting (removable), x = 3 cusp, x = 4 discriting (jump), x = 5 discriting (VA)
- **2.** (a) 4
 - (b) $\frac{1}{7}$
 - (c) $-\infty$
 - (d) $\frac{1}{12}$
- **3.** A = 6, B = 5
- 4. Discriting at x = -4, 8
- 5. (a) If $f(x) = \frac{P(x)}{Q(x)}$ and Q(2) = 0 then **MIGHT** have a vertical asymptote of x = 2.
 - (b) A function **CANNOT** have 3 different horizontal asymptotes.
 - (c) A function **MIGHT** have 3 different vertical asymptotes.

6. (a)
$$f(x) = \frac{-5}{(x+1)^2}$$

(b) $f(x) = \frac{-5}{16}$
7. (a) $y' = \frac{10}{3}x + \frac{1}{x\ln(5)} - \sec(2x)\tan(2x)(2) - \frac{2}{7}x^{-8/7}$
(b) $y' = 5e^{2x} + 5xe^{2x}(2) + \frac{1}{2}(\tan x)^{-1/2}\sec^2 x$
(c) $y' = \left[3\ln(1+\sqrt{x}) + \frac{3x}{1+\sqrt{x}}(\frac{1}{2}x^{-1/2}\right](1+\sqrt{x})^{3x}$
(d) $y' = \frac{\ln(5)5^{3x}(3)\cos(2x) - 5^{3x}(-\sin(2x))2}{(\cos^2(2x))^2}$
(e) $y' = \cos(\ln(x^2+x) - 7x)(\frac{2x+1}{x^2+x} - 7)$
(f) $y' = \frac{3}{2x+4}(2) + 4 - \frac{5}{\cot x}(-\csc^2 x)$
8. $y'' = 18x + 4x^{-3} + 2e^x + 4xe^x + x^2e^x$
9. $y^{(2019)} = -\cos(2x+1) \cdot 2^{2019}$
10. $y = 1$

- **11.** local min at x = 0 test fails at x = -1
- **12.** (a) Max $18\sqrt[3]{2}$ Min -27
 - (b) No max or min
- **13.** Graph provided below

14. (a) \$ 26

- (b) Nope
- **15.** Smallest perimeter is 36 (at x = 6)

16. (a) $E(p) = \frac{-p(-2p+1)}{-p^2 + p + 35}$ (b) demand deceases by $\frac{3.\%}{2.\%}$ 6%

(c) increase price (since inelastic)