(Marks)
(4) 1. Use the graph of the function below to find the following limits. Use $\infty,-\infty$ or DNE where appropriate.
(a) $\lim _{x \rightarrow-\infty} f(x)=$ \qquad
(b) $\lim _{x \rightarrow 2^{-}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 6^{+}} f(x)=$ \qquad
(d) $\lim _{x \rightarrow 1^{-}} f(x)=$ \qquad
(e) $\lim _{x \rightarrow 1} f(x)=$ \qquad
(f) $\lim _{x \rightarrow \infty} f(x)=$ \qquad
(g) $f(1)=$ \qquad
(h) $f(2)=$ \qquad

(15) 2. Use algebraic techniques to evaluate the following limits. Identify the limits that do not exist, and use $-\infty$ or ∞ as appropriate. Show your work.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{-x^{2}-5 x+14}$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$, where $f(x)=\left\{\begin{array}{lll}7-x^{2} & \text { if } & x<3 \\ 2 x-4 & \text { if } & x \geq 3\end{array}\right.$
(c) $\lim _{x \rightarrow+\infty} \frac{(2 x-1)(x+2)}{x-5}$
(d) $\lim _{x \rightarrow 5^{+}} \frac{4 x-2}{2 x^{2}-7 x-15}$
(e) $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}$
(3) 3. Given the graph of $y=f(x)$
(a) Give the interval(s) where the slope of the tangent line to the curve of $f(x)$ is negative.
(b) Locate the x-value(s) where $f(x)$ is continuous but not differentiable.
(c) Locate the x-value(s) where $f(x)$ is not differentiable.

(3) 4. Find the value(s) of k such that $f(x)$ is continuous:

$$
f(x)=\left\{\begin{array}{lll}
k x^{2}+2 k^{2} x-4 & \text { if } & x \leq 1 \\
4 k x^{2}+k^{2} x+6 & \text { if } & x>1
\end{array}\right.
$$

(5) 5. Using only the limit definition of the derivative, show that if $f(x)=x^{2}-5 x+3$ then $f^{\prime}(x)=2 x-5$.
6. Find $\frac{d y}{d x}$ for each of the following functions. Do not simplify your answers.
(a) $y=8 x^{3}-\sqrt[5]{x}+2 x^{e+1}+e^{3}$
(b) $y=\left(\frac{5 x-3}{2-7 x}\right)^{2}$
(c) $y=e^{\sec (5 x)} \cot (7 x)$
(d) $y=\ln \left(\frac{\sqrt[4]{2 x-3}}{\cos (x)\left(3 x^{2}-x\right)^{3}}\right)$
(e) $x y=(x+3 y)^{4}+7$
(f) $y=4^{x} \log _{4}(\sqrt{x})$
(g) $y=(3 x+2)^{\cos (x)}$
(4) 7. Find the second derivative of $f(x)=x e^{5-6 x}+x^{-1}$.
(4) 8. Find the absolute maximum and absolute minimum of $f(x)=x^{3}+2 x^{2}-15 x+27$ on the interval $[-4,-2]$.
(4) 9. Find an equation of the line tangent to the curve of $y=\frac{x^{2}+1}{x-2}$ at $x=4$.
(4) 10. Use the second derivative test to find the relative extrema of $f(x)=x^{4}-4 x^{3}+4 x^{2}+3$.
(Marks)
(10) 11. Given $f(x)=\frac{(5 x+4)(x-4)}{x^{2}}, f^{\prime}(x)=\frac{16(x+2)}{x^{3}}$ and $f^{\prime \prime}(x)=\frac{-32(x+3)}{x^{4}}$,
(a) Find the y-intercept, x-intercepts, vertical and horizontal asymptotes, relative extrema and points of inflection (if any). Find the intervals where f is increasing, decreasing, concave up, concave down.
(b) Sketch a graph of $f(x)$.
(5) 12. For a certain product, the demand function is $p=1000-x$, and the average cost is $\bar{C}=\frac{3000}{x}+20$.
(a) Write the revenue function in simplified form.
(b) Write the cost function in simplified form.
(c) Write the profit function in simplified form.
(d) Find the marginal profit at $x=300$, and interpret the result.
(e) At what level of production will the profit be maximized? (Be sure to use a test to confirm that the profit is a maximum)
(6) 13. A private school wants to enclose a rectangular courtyard of 7200 square meters using the school building as one side of the yard. The opposite side to the building costs $\$ 90$ per linear meter and the other two sides cost $\$ 40$ per linear meter. The building side needs no fence. Find the dimensions of the courtyard that will result in the minimum cost of the fence.
(Be sure to use a test to confirm that this is a minimum)
(5) 14. The demand function for a manufacturer's product is given by $p=300-x^{2}$, where p is the price per unit when x units are demanded.
(a) Determine the price elasticity of the demand when $x=5$.
(b) For what value(s) of x does the demand have unit elasticity?

Answers

(1a) $+\infty$; (1b) -1 ; (1c) $+\infty$; (1d) -2 ; (1e) -2 ; (1f) 1 ; (1g) DNE ; (1h) 3
(2a) $-\frac{4}{9} \approx-0.44 ;(2 \mathrm{~b})-2 ;(2 \mathrm{c})+\infty ;(2 \mathrm{~d})+\infty ;(2 \mathrm{e}) \frac{1}{4}=0.25$
(3a) $]-\infty,-1[\cup]-1,1[\cup] 1,3[;(3 \mathrm{~b}) x=4 ;(3 \mathrm{c}) x=-1, x=1, x=3, x=4 ;(4) k=-2, k=5$
(5) Use $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find $f^{\prime}(x)=2 x-5$
(6a) $\frac{d y}{d x}=24 x^{2}-\frac{1}{5} x^{-4 / 5}+2(e+1) x^{e}$; (6b) $\frac{d y}{d x}=2\left(\frac{5 x-3}{2-7 x}\right)\left[\frac{5(2-7 x)-(5 x-3)(-7)}{(2-7 x)^{2}}\right]$
(6c) $\frac{d y}{d x}=e^{\sec (5 x)}[\sec (5 x) \tan (5 x) .(5)] \cot (7 x)+e^{\sec (5 x)}\left[-\csc ^{2}(7 x) .(7)\right]$
(6d) $\frac{d y}{d x}=\frac{2}{4(2 x-3)}-\frac{-\sin (x)}{\cos (x)}-\frac{3(6 x-1)}{3 x^{2}-x}$; (6e) $\frac{d y}{d x}=\frac{4(x+3 y)^{3}-y}{x-12(x+3 y)^{3}}$
(6f) $\frac{d y}{d x}=4^{x} \ln (4) \cdot \log _{4} \sqrt{x}+\frac{1}{2} \frac{1}{x \ln (4)} \cdot 4^{x}$; (6g) $\frac{d y}{d x}=(3 x+2)^{\cos x}\left[-\sin (x) \ln (3 x+2)+\frac{3 \cos (x)}{3 x+2}\right]$
(7) $f^{\prime \prime}(x)=-12 e^{5-6 x}+36 x e^{5-6 x}+2 x^{-3}$
(8) absolute maximum is 63 when $x=-3$; absolute minimum is 55 when $x=-4$
(9) $y=-\frac{1}{4} x+\frac{19}{2} ;(10)$ relative minimum at $(0,3)$ and $(2,3)$; relative maximum at $(1,4)$
$x-$ intercepts : $\left(-\frac{4}{5}, 0\right) ;(4,0)$
y - intercept: none
vertical asymptote: $x=0$
horizontal asymptote: $y=5$
relative minimum: $(-2,9)$
points of inflection: $\left(-3, \frac{77}{9}\right)$
increasing: $x<-2$ or $x>0$
decreasing: $-2<x<0$
concave up: $x<-3$
concave down: $-3<x<0$ or $x>0$

(12a) $R(x)=1000 x-x^{2}$; (12b) $C(x)=3000+20 x$; (12c) $P(x)=-x^{2}+980 x-3000$
(12d) an increase from 300 to 301 units would result in an increase of about $380 \$$ in profits (12e) 490 units to maximize profit
(13) A courtyard with dimensions 90 meters by 80 meters to minimize cost
(14a) $\eta(5)=-5.5 ;(14 \mathrm{~b})$ demand has unit elasticity at $x=10$ units

