(Marks)

(4) 1. Use the graph to find the following limits. Use $\infty,-\infty$, or DNE where appropriate.
(a) $\lim _{x \rightarrow-2} f(x)=$
(b) $\lim _{x \rightarrow-\infty} f(x)=$
(c) $\lim _{x \rightarrow \infty} f(x)=$
(d) $\lim _{x \rightarrow 0^{-}} f(x)=$
(e) $\lim _{x \rightarrow 2} f(x)=$ \qquad
(f) $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad
(g) $f(0)=$ \qquad
(h) $f(2)=$ \qquad

(15) 2. Use algebraic techniques to evaluate the following limits. Identify the limits that do not exist, and use ∞ or $-\infty$ where appropriate. Show your work.
(a) $\lim _{x \rightarrow-2} \frac{2 x^{2}+x-6}{3 x^{2}-12}$
(b) $\lim _{x \rightarrow 7} \frac{2-\sqrt{x-3}}{x-7}$
(c) $\lim _{x \rightarrow-\infty} \frac{4 x^{4}-3 x^{3}-4}{-2 x^{5}+1-5 x}$
(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$
(e) $\lim _{x \rightarrow 3^{+}} f(x)$ where $f(x)=\left\{\begin{array}{lll}x^{2}+3 & \text { for } & x<3 \\ \frac{x-3}{x^{2}-9} & \text { for } & x>3\end{array}\right.$
(3) 3. Use the definition of continuity to find the value(s) of x for which the following function is discontinuous.
$f(x)=\left\{\begin{array}{ccc}x^{2}-3 & \text { for } & x<-2 \\ \frac{1}{(2 x+7)(x-4)} & \text { for } & x \geq-2\end{array}\right.$
(3) 4. Find the value(s) of k such that $f(x)$ is continuous for all real numbers
(Marks)
$f(x)=\left\{\begin{array}{lll}-x^{2}-5 k & \text { for } & x<2 \\ k^{2}-\frac{20}{x} & \text { for } & x \geq 2\end{array}\right.$
(5) 5. (a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\sqrt{3 x-8}$.
(b) Check your answer using the derivative rules.
(c) Use your answer in part a) to find the slope of the line tangent to $f(x)$ at $x=4$.
6. Find $\frac{d y}{d x}$ for each of the following. Do not simplify your answers.
(a) $y=\frac{4}{\sqrt{x}}-\sqrt[4]{x}+x^{4}-4^{x}$
(b) $y=5 x \log _{2}(\sin x)$
(c) $y=\sqrt{\frac{e^{3 x+2}}{\sec 3 x}}$
(d) $y=\ln \left(\left((3 x-2)^{5}(4-2 x)^{6}\right)^{2}\right)$
(e) $y=x^{3} \cos ^{2} x+x^{3} \sin ^{2} x+\pi$
(f) $y=5(3 x)^{e^{x}}$
(g) $4 x^{2} y^{3}+x^{3}=(3 x+y)^{2}$
(4) 7. Determine the x-value(s) where $f(x)$ has horizontal tangents given $f(x)=\frac{3}{4 x^{2}+7 x-2}$
(4) 8. Given the function $f(x)=e^{3 x} \cos (1+x)$, determine $f^{\prime \prime}(0)$.
(4) 9. Use the second derivative test to determine the relative extrema of $f(x)=3 x^{3}-9 x$
(4) 10. Determine the absolute maximum and minimum of $f(x)=x^{2} e^{-x}$ on the interval $[-1,1]$.
(10) 11. Given $f(x)=\frac{3 x^{2}}{x-1} ; f^{\prime}(x)=\frac{3 x(x-2)}{(x-1)^{2}} ; f^{\prime \prime}(x)=\frac{6}{(x-1)^{3}}$
(a) Find the y-intercept, x-intercept, any vertical and horizontal asymptotes, relative extrema and points of inflection (if any).
Find the intervals where f is increasing, decreasing, concave up and concave down.
(b) Sketch a graph of $f(x)$.
(5) 12. For brunch parties, a catering company charges $\$ 8$ per person for groups of 50 people or fewer. In order to encourage large groups, for each additional person above fifty, the caterer will reduce the price for everyone by $\$ 0.05$.
(a) What size group will produce maximum revenue for the caterer?
(b) What is the maximum revenue?
(6) 13. A storage box with square base and no top is to have a volume of $40 \mathrm{~m}^{3}$. Material for the base costs $\$ 5$ per square meter. Material for the sides costs $\$ 4$ per square meter. Find the cost of materials for the cheapest such container. Use a test to verify that a minimum was found.
(5) 14. The demand equation for a product is $p=1200-40 \sqrt{x}$
(a) Find the elasticity of demand at $x=300$.
(b) Is the demand elastic or inelastic when $x=300$? In your own words, describe what this represents.
(c) Does the demand have unit elasticity at $x=400$? Justify your answer.

Answers

1. a) 0
b) $+\infty$
c) 1
d) -2
e) $+\infty$
f) 0
g) 3
h) undefined
2. a) $\frac{7}{12}$
b) $-\frac{1}{4}$
c) 0
d) $-\infty$
e) $\frac{1}{6}$
3. $x=-2$ or $x=4 \quad$ 4. $k=-6 ; k=1$
4. a) Use $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
b) $f^{\prime}(x)=\frac{3}{2 \sqrt{3 x-8}}$
c) $f^{\prime}(4)=\frac{3}{4}$
5. a) $\frac{d y}{d x}=-2 x^{-3 / 2}-\frac{1}{4} x^{-3 / 4}+4 x^{3}-4^{x} \ln (4)$
b) $\frac{d y}{d x}=5 \log _{2}(\sin x)+5 x \cdot \frac{\cos x}{\sin x \ln (2)}$
c) $\frac{d y}{d x}=\frac{1}{2}\left(\frac{e^{3 x+2}}{\sec 3 x}\right)^{-1 / 2}\left[\frac{3 e^{3 x+2} \sec 3 x-3 \sec 3 x \tan 3 x e^{3 x+2}}{\sec ^{2} 3 x}\right]$
d) $\frac{d y}{d x}=\frac{30}{3 x-2}+\frac{-24}{4-2 x}$
e) $\frac{d y}{d x}=3 x^{2} \cos ^{2} x-2 \sin x \cos x \cdot x^{3}+3 x^{2} \sin ^{2} x+2 \sin x \cos x \cdot x^{3}$
f) $\frac{d y}{d x}=5(3 x)^{e^{x}}\left[e^{x} \ln (3 x)+\frac{e^{x}}{x}\right]$
g) $\frac{d y}{d x}=\frac{18 x+6 y-8 x y^{3}-3 x^{2}}{12 x^{2} y^{2}-6 x-2 y} \quad$ 7. $x=-\frac{7}{8}$
6. $8 \cos (1)-6 \sin (1) \approx-0.73$
7. relative maximum at $(-1,6)$ and relative minimum at $(1,-6)$
8. absolute maximum is 2.72 at $x=-1$ and absolute minimum is 0 at $x=0$
9. a) y-int and x-int:(0,0$)$
vertical asymptote: $x=1$
horizontal asymptote: none
relative maximum: $(0,0)$
relative minimum: $(2,12)$
PI: none
Inc: $(-\infty, 0) \cup(2,+\infty)$
Dec: $(0,1) \cup(1,2)$
CU: $(1,+\infty)$
CD: $(-\infty, 1)$
10. a) 105 people
11. b) maximum revenue is $\$ 551.25$
12. cost of materials: $\$ 240$
13. a) $\eta(300)=-1.46$
b) elastic at $x=300$ units;
if price decreases by 10%, the quantity increases by 14.6%;
revenue will increase

c) yes, unit elasticity at $x=400$ units
