1. Given the graph of f below, evaluate each of the following. Use ∞ , $-\infty$ or "does not exist" where (4) appropriate.

- a) $\lim_{x\to 2} f(x) =$
- $\mathrm{b)}_{x \to -1} f(x) =$
- c)f(0) =

- d) $\lim_{x \to 0^{-}} f(x) =$
- e $\lim_{x \to -\infty} f(x) =$
- f)f(2) =

- g) List the discontinuities of f(x).
- (16) 2. Evaluate the following limits. Use ∞ , $-\infty$ or "does not exist" where appropriate. a) $\lim_{x\to -1}\frac{x^2+3x+2}{2x^2-x-3}$

a)
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{2x^2 - x - 3}$$

b)
$$\lim_{x \to 4} \frac{\sqrt{x+5} - 3}{x-4}$$

c)
$$\lim_{x \to 3} \frac{\frac{1}{x+1} - \frac{1}{4}}{x-3}$$

d)
$$\lim_{x \to -4} \frac{x+5}{x^2-16}$$

e)
$$\lim_{x \to -\infty} \frac{(x-3)(3x^2+1)}{2x^3-5}$$

f)
$$\lim_{x \to 5^+} \frac{3|5-x|}{x^2 - 12x + 35}$$

(3) 3. Find the point(s) of discontinuity for the following function. Justify using the definition of continuity.

$$f(x) = \begin{cases} \frac{7}{x^2 + 2x - 15} & \text{if } x < 2\\ 5 & \text{if } x = 2\\ x^2 - 5 & \text{if } x > 2 \end{cases}$$

(3) 4. Find the value(s) for a and b such that the following function is continuous for all real numbers.

$$f(x) = \begin{cases} 5 & \text{if } x \le 0 \\ ax - b & \text{if } 0 < x < 8 \\ 3 & \text{if } x \ge 8 \end{cases}$$

(1) 5. True or False: If f(c) is undefined then $\lim_{x\to c} f(x)$ does not exist. Briefly justify your answer.

(1) 6. (a) State the limit definition of the derivative.

(3) (b) Use the definition to find the derivative of $f(x) = \frac{1}{3-2x}$.

(20) 7. Find the derivative for each of the following functions. Do not simplify.

a)
$$y = 8x^3 - \frac{4}{x} + \frac{5}{\sqrt{3x}} + 4\pi^2$$

b)
$$y = 3(2x+5)^2(3x-e^{2x})^6$$

c)
$$y = \log_2(\sqrt{x}) + 4\sqrt[3]{x^5} - 4\cot(2x - 3)$$

d)
$$y = \frac{\sin^2(4x)}{x^3 + 2x}$$

e)
$$y = 2x^{x^2+1}$$

f)
$$y = \ln \left[\left(\frac{\left(\sqrt{x-5}\right)e^{5x}}{(3x+1)\sec x} \right)^2 \right]$$

(3) 8. Find the x-coordinates of the point(s) on the curve $y = x^3 e^{2x}$ that have horizontal tangents.

(4) 9. Find
$$\frac{d^4y}{dx^4}$$
 given $y = 3^{2x+1} + \ln(\pi)x^3 - \sin x$.

- (5) $10.\text{Let } x^2y^2 + y\ln(x) = 4x.$
 - a) Find $\frac{dy}{dx}$
 - b) Find the equation of the tangent line to the curve at (1,2)

(10) 11. Given
$$f(x) = \frac{2x^2 - 18}{x^2 - 4}$$
 with $f'(x) = \frac{20x}{(x^2 - 4)^2}$ and $f''(x) = \frac{-20(3x^2 + 4)}{(x^2 - 4)^3}$,

- (a) Find the x- and y- intercepts (if any).
- (b) Find the vertical and horizontal asymptotes (if any).
- (c) Give the intervals where f(x) is increasing and decreasing, and the relative extrema (if any).
- (d) Give the intervals where f(x) is concave up and concave down, and the points of inflection (if any).
- (e)Sketch a labelled graph of f(x).
- (3) 12. Use the second derivative test to find all the relative (local) extrema of $f(x) = (x^2 9)^2$
- (3) 13. Find the absolute (global) extrema of $f(x) = x^3(x-5)^2$ on the interval [1, 4].
- (5) 14.A rectangular storage container with an open top is to have a volume of 32 m³. The length of the base is four times its width. Material for the base costs \$5 per square meter. Material for the sides costs \$4 per square meter. Find the cost of materials for the cheapest such container.
- 15.Let the revenue function of a product be given by $R=-0.003x^2+5x$ and the average cost function be given by $\bar{C}(x)=\frac{300}{x}+1.1$, where $0 \le x \le 800$.
 - a) Determine the production level that will maximize profit.
 - b) At this production level, what comparison can we make regarding marginal revenue and marginal cost?
- (5) 16.A sugar shack has been trying to attract more customers and introduced the following pricing scheme: Groups up to ten pay \$20 per ticket. For each additional ticket, all group members receive a \$0.20 discount. What size group would maximize the revenue of this sugar shack?
- (6) 17. The demand curve for a product is given by $x = 3000 250p^2$ where x is the production level and p is the unit price in dollars.

- a) Determine the price elasticity of demand function η .
- b) What is the price elasticity of demand when the price is \$3? Is demand elastic, inelastic or unit elastic?
- c) At the price of \$3, if the price decreases by 3%, how is demand affected?
- d) Determine the price that would maximize the revenue.

ANSWERS

1.a) 2 b) DNE c) 3 d) 1 e) 2 f) DNE g) Discontinuities at
$$x = -1, x = 0, x = 2$$
 2.a) $-\frac{1}{5}$ b) $\frac{1}{6}$ c) $-\frac{1}{16}$ d) DNE e) $\frac{3}{2}$ f) $-\frac{3}{2}$

3) Discontinuities at x = -5, x = 2 4) a = 1, b = -55) False

6)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 b) $\frac{2}{(3-2x)^2}$

7.a)
$$y' = 24x^2 + \frac{4}{x^2} - \frac{5}{2\sqrt{3}}x^{-3/2}$$
 b) $y' = 3(2)(2x+5)(2)(3x-e^{2x})^6 + 3(2x+5)^2(6)(3x-e^{2x})^5(3-2e^2x)$

7.a)
$$y' = 24x^2 + \frac{4}{x^2} - \frac{5}{2\sqrt{3}}x^{-3/2}$$
 b) $y' = 3(2)(2x+5)(2)(3x-e^{2x})^6 + 3(2x+5)^2(6)(3x-e^{2x})^5(3-2e^2x)$ c) $y' = \frac{1}{2x\ln 2} + 4\frac{3}{5}x^{2/3} - 4\csc^2(2x-3)$ d) $y' = \frac{2\sin(4x)\cos(4x)(4)(x^3+2x)\sin^2(4x)(3x^2+2)}{(x^3+2x)^2}$ e) $y' = 2x^{x^2+1}\left(2x\ln x + \frac{x^2+1}{x}\right)$ f) $y' = 2\left(\frac{1}{2(x-5)} + 5 - \frac{3}{3x+1} - \tan x\right)$

e)
$$y' = 2x^{x^2+1} \left(2x \ln x + \frac{x^2+1}{x} \right)$$
 f) $y' = 2 \left(\frac{1}{2(x-5)} + 5 - \frac{3}{3x+1} - \tan x \right)$

8)
$$x = 0, \frac{-2}{3}$$
 9) $y' = 3^{2x+1}(2\ln 3)^4 - \sin x$ 10) $y' = \frac{-(2x^2y^2 - 4x + y)}{(2x^3y + x\ln(x))}$

- 11) Intercepts (3,0), (-3,0), (0,4.5) b) VA:x = -2, x = 2 HA: y = 2
- c) INC: $(0,2) \cup (2,\infty)$ DEC: $(-\infty,-3) \cup (-3,0)$ Local Max: NONE, local Min: (0,4.5)
- d) CU:(-2, 2) CD: $(-\infty, 2) \cup (2.\infty)$, no inflection points.

- 12) Local Max: (0,81), Local Mins: (-3,0), (3,0)
- 13) Abs Max of 108 at x=3, Abs Min of 16 at x=1 14) $2m \times 8m \times 2m$
- 15.a) A production level of 650. b) They are equal (R' = C') 16) A group of 45 people

17.a) Taking
$$\eta$$
 as a function of p , $\eta = \frac{p}{xp'} = \frac{-500p^2}{3000 - 250p^2}$ b) $\eta(3) = -6$. Elastic

c) Demand increases by 18% d) At a price of \$2