1. (8 points) Give the solution set for each of the following systems, or indicate that no solution exists, as appropriate.
(a) $\left\{\begin{array}{l}6 x_{1}+4 x_{2}-8 x_{3}+6 x_{4}=24 \\ 3 x_{1}+4 x_{2}-2 x_{3}+6 x_{4}=21 \\ 2 x_{1}+3 x_{2}-x_{3}+2 x_{4}=3\end{array}\right.$
(b) $\left\{\begin{aligned} 3 x_{1}-x_{2}+7 x_{3}= & -11 \\ -2 x_{1}+x_{2}-5 x_{3}= & 8 \\ 3 x_{1}+2 x_{2}+4 x_{3}= & -10 \\ -2 x_{1}+2 x_{2}-6 x_{3}= & 10\end{aligned}\right.$
2. (6 points) For the system $\left\{\begin{array}{rl}x_{1} & +5 x_{3}= \\ -x_{1} & =2 \\ x_{1} & +k x_{2}+ \\ x_{2} & =8 \\ & +12 x_{3}\end{array}=h \quad\right.$, find the value(s) of h and k for which the system has
(a) Infinitely many solutions.
(b) No solution.
(c) A unique solution.
3. (3 points) The Funky Fruit Smoothie Company is producing smoothies out of mango, banana and orange. To produce one Bahama smoothie, it takes 6 mangos, 7 bananas, and 5 oranges. To produce one Miami smoothie, it takes 3 mangos, 2 bananas, and 1 orange. Finally, to make a Venezuela smoothie, it takes 2 bananas and 2 oranges. The company has 24 mangos, 46 bananas and 38 oranges on hand.
(a) Set up a linear system to determine the numbers of Bahama, Miami, and Venezuela smoothies that can be produced in order to use up all the ingredients. Do not solve this system.
(b) Assuming that the solution to this system is $\left\{\begin{array}{rr}x_{1}=10-\frac{2}{3} t \\ x_{2}=-12+\frac{4}{3} t \\ x_{3}= & t\end{array}, t \in \mathbb{R}\right.$, and knowing that only complete smoothies can be produced, determine all the realistic solutions to this system.
4. (5 points) Consider $A=\left[\begin{array}{cc}0 & -1 \\ 2 & 3\end{array}\right], B=\left[\begin{array}{cc}3 & 0 \\ -1 & 2 \\ 0 & 5\end{array}\right]$, and $C=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & 0 & -4\end{array}\right]$. Find the following, or state that the calculation is undefined, as appropriate.
(a) $(C B)^{-1}$.
(b) $A^{T} C^{T}$.
(c) The matrix X for which $A^{-1} X=C$.
5. (3 points) Given $A=\left[\begin{array}{cc}1 & 2 y \\ 4 & 0 \\ 5 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & x^{2} & 5 \\ 2 & 0 & 1\end{array}\right]$, find all value(s), if any, of x and y so that $A B$ is symmetric.
6. (5 points) An economy has two industries: Tics and Tacs.

To produce $\$ 1$ of Tics requires $20 \dot{c}$ of Tics and $\$ 1$ of Tacs. To produce $\$ 1$ of Tacs requires 10 \dot{c} of Tics and $70 \dot{c}$ of Tacs.
(a) Find the consumption matrix C associated with this economy.
(b) Which of the two industries are profitable? Justify your answer.
(c) Given an external demand for $\$ 1400$ of Tics and $\$ 2800$ of Tacs, how much of each industry should be produced to meet it?
(d) Find the internal consumption when demand is met.
7. (7 points) Let A, B, and C be 3×3 matrices. Assume A is non-invertible, $\operatorname{det}(B)=5$, and $\operatorname{det}(C)=$ $-\frac{4}{3}$. Find the following, or state that there is not enough information. Justify all of your answers by showing your work.
(a) $\operatorname{det}\left(3 B^{-1} C^{2}\right)$
(b) $\operatorname{det}(A B+A C)$
(c) $\operatorname{rank}(B)$
(d) $\operatorname{det}(A+B)$
8. (6 points) The matrix $\left[\begin{array}{rrrr}-3 & -5 & 4 & 8 \\ 1 & -1 & 2 & 9 \\ 6 & 2 & -2 & 9 \\ 9 & 13 & 0 & 8\end{array}\right]$ has a determinant of 16.

Use Cramer's Rule to solve for x_{2} only in the system of linear equations

$$
\left\{\begin{array}{r}
-3 x_{1}-5 x_{2}+4 x_{3}+8 x_{4}=2 \\
x_{1}-2 x_{2}+2 x_{3}+9 x_{4}=-4 \\
6 x_{1}+2 x_{2}-2 x_{3}+9 x_{4}=4 \\
9 x_{1}+13 x_{2}+8 x_{4}=3
\end{array}\right\}
$$

9. (2 points) Let A and B be an $n \times n$ matrices. Answer True or False. If False, explain your answer.
a) If $\operatorname{det}(A)=0$, then the system of linear equations $A X=B$ must have no solution.
b) If $\operatorname{det}(A B) \neq 0$, then both A and B are necessarily invertible matrices.
10. (5 points) Consider the planes $\mathcal{P}_{1}:-2 x+y+3 z=2$ and $\mathcal{P}_{2}: 3 x+h y+k z=4$.
(a) Give the vector equation of a line through the origin that is orthogonal to the plane \mathcal{P}_{1}.
(b) Find possible values of h and k for which the planes \mathcal{P}_{1} and \mathcal{P}_{2} are parallel, or state that no such values exist, as appropriate.
(c) Find one possible set of values of h and k for which the planes \mathcal{P}_{1} and \mathcal{P}_{2} are perpendicular, or state that no such values exist, as appropriate. (Note: Many correct answers exist.)
11. (6 points) Consider the points $P_{1}(2,3,5), P_{2}(4,-2,3)$ and $P_{3}(3,-4,7)$.
(a) Find $\left\|\overrightarrow{P_{1} P_{2}}\right\|$
(b) Find a vector equation of the plane containing the points P_{1}, P_{2}, and P_{3}.
(c) Find an equation of the plane containing the points P_{1}, P_{2}, and P_{3} in general form $(a x+b y+c z=d)$.
12. (3 points) Suppose A is $m \times n$ and that $\operatorname{dim}(\operatorname{Col}(A))=4$.
(a) Suppose that $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. What is the value of n ?
(b) Give the rank of A^{T}.
(c) Now suppose that the null space of A^{T} is a line through the origin. What is the value of m ?
13. (1 point) Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 2\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{r}-2 \\ 2 \\ 2\end{array}\right]$.

Is \mathbf{u} in $\operatorname{Nul}(A)$? Justify your answer.
14. (6 points) Given the vectors $\mathbf{u}=\left[\begin{array}{c}4 \\ -1 \\ 7\end{array}\right], \mathbf{v}=\left[\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right], \mathbf{w}=\left[\begin{array}{l}5 \\ 1 \\ 8\end{array}\right]$,
(a) For which value(s) of k is vector $\left[\begin{array}{c}4 \\ -2 \\ k\end{array}\right]$ in $S=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
(b) Find a basis for S.
(c) Describe $S=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. If the span is a line, give its equation in vector form. If the span is a plane, give its equation in general form $(a x+b y+c z=d)$.
15. (3 points) Determine if the following set S is a subspace of \mathbb{R}^{3}. Justify your answer. $S=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, z=x^{3}\right\}$.
16. (3 points) Given that $S=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right] \in \mathbb{R}^{5} \left\lvert\, \begin{array}{l}x_{1}=c \\ x_{2}=e \\ x_{3}=g, \text { with } c, e, g, p \in \mathbb{R} \\ x_{4}=e \\ x_{5}=p\end{array}\right.\right\}$ is a subspace of \mathbb{R}^{5},
(a) Find a basis for S.
(b) What is the dimension of S ?
17. (2 points) Given $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}$, and $\mathbf{u}_{\mathbf{4}}$ vectors from \mathbb{R}^{n}, fill in the blanks with the appropriate word from the following list: MUST, MIGHT or CANNOT.
If $S=\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}=\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{4}}\right\}$, then
(a) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ \qquad be linearly independent.
(b) $\mathbf{u}_{\mathbf{3}}$ \qquad be a linear combination of $\mathbf{u}_{\mathbf{1}}$ and $\mathbf{u}_{\mathbf{2}}$.
18. (8 points) Given the vectors $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{l}8 \\ 2 \\ 5\end{array}\right], \mathbf{u}_{\mathbf{3}}=\left[\begin{array}{c}-12 \\ 0 \\ -9\end{array}\right], \mathbf{u}_{\mathbf{4}}=\left[\begin{array}{l}24 \\ 10 \\ 13\end{array}\right]$ and $\mathbf{u}_{\mathbf{5}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and the fact that the matrix R below is the reduced row echeclon form of the matrix A, answer the following questions.

$$
A=\left[\begin{array}{rrrrr}
4 & 8 & -12 & 24 & 0 \\
0 & 2 & 0 & 10 & 1 \\
3 & 5 & -9 & 13 & 0
\end{array}\right] \quad R=\left[\begin{array}{rrrrr}
1 & 0 & -3 & -4 & 0 \\
0 & 1 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find a unit vector parallel to $\mathbf{u}_{\mathbf{1}}$.
(b) Express the vector \mathbf{u}_{4} as a linear combination of the vectors \mathbf{u}_{1} and $\mathbf{u}_{\mathbf{2}}$.
(c) Express the vector $\mathbf{u}_{\mathbf{2}}$ as a linear combination of the vectors \mathbf{u}_{1} and $\mathbf{u}_{\mathbf{4}}$.
(d) Determine whether each of the following set is linearly independent or linearly dependent.
i. $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$
ii. $\left\{\mathbf{u}_{2}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$
(e) Give a basis for $\operatorname{Nul}(A)$.
19. (6 points) John got a message from his super paranoid mom about where to meet.

Given a Hill 2-cipher with encryption matrix $A=\left[\begin{array}{rr}11 & 1 \\ 5 & 2\end{array}\right]$, decrypt the following message to figure out what he should do:

NMYRRW

You may find the following table of multiplicative inverses $\bmod (26)$ helpful:

a	1	3	5	7	9	11	15	17	19	21	23	25
a^{-1}	1	9	21	15	3	19	7	23	11	5	17	25

20. (6 points) A small vegetarian sandwich shop serves only two kinds of sandwiches: falafel and tofu. The shop observes that if a customer orders a falafel sandwich, there is a 70% chance that she will order a falafel sandwich on their next visit. If the customer orders a tofu sandwich, there is a 40% chance that they will order a falafel sandwich on their next visit.
(a) Give a transition matrix P associated with this situation.
(b) Sally goes to the sandwich shop once a week. If she ordered a falafel sandwich 2 weeks ago, what is the probability that she will order a tofu sandwich this week?
(c) Find a steady state vector associated with the matrix P from part (a). Your answer should be given using fractions.
21. (6 points) Use the Simplex Method to find a basic feasible solution that maximizes $z=2 x+7 y$ subject to the following constraints:
$\left\{\begin{aligned}-4 x+2 y & \leq 8 \\ -2 x+4 y & \leq 40 \\ 2 x+y & \leq 5 \\ x, y & \geq 0\end{aligned}\right.$

ANSWERS

1. (a) $\left\{x_{1}=1+2 t, x_{2}=-3-t, x_{3}=t, x_{4}=5\right\}$
(b) No solution
2. (a) $k=\frac{7}{2}$ and $h=5$
(b) $k=\frac{7}{2}$ and $h \neq 5$
(c) $k \neq \frac{7}{2}$ and h can have any value
3. (a) $\left\{\begin{array}{l}6 x+3 y+0 z=24 \\ 7 x+2 y+2 z=46 \\ 5 x+y+2 z=38\end{array}\right.$
(b) $\{x=4$ Bahamas, $y=0$ Miamis, $z=9$ Venezuelas $\},\{x=2$

Bahamas, $y=4$ Miamis, $z=12$ Venezuelas $\}$, and $\{x=0$ Bahamas, $y=8$ Miamis, $z=15$ Venezuelas $\}$
4. (a) $\left[\begin{array}{rr}10 / 39 & 1 / 13 \\ 1 / 26 & -1 / 26\end{array}\right]$
(b) undefined
(c) $\left[\begin{array}{rrr}-1 & 0 & 4 \\ 7 & 6 & -12\end{array}\right]$
5. $x= \pm 2, y=1$
6. (a) $C=\left[\begin{array}{ll}0.20 & 0.10 \\ 1.00 & 0.70\end{array}\right]$
(b) Tics are not profitable, as they spend $\$ 1.20$ to produce $\$ 1$ of output.

Tacs are profitable, as they spend only $80 ¢$ to produce $\$ 1$ of output.
(c) $\$ 5000$ of Tics and $\$ 26000$ of Tacs should be produced. (d) The economy consumes $\$ 3600$ of Tics and $\$ 23200$ of Tacs.
7. (a) $\frac{48}{5}$
(b) 0
(c) 3
(d) not enough information
8. -140
9. (a) False.
(b) True.
10. (a) $\mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{r}-2 \\ 1 \\ 3\end{array}\right] \quad$ (b) $h=\frac{-3}{2}, k=\frac{-9}{2} \quad$ (c) $h=3, k=1$ (multiple answers possible)
11. (a) $\sqrt{33} \quad$ (b) $\mathbf{x}=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]+s\left[\begin{array}{r}2 \\ -5 \\ -2\end{array}\right]+t\left[\begin{array}{r}1 \\ -7 \\ 2\end{array}\right]$
(c) $8 x+2 y+3 z=37$
12. (a) $n=4$
(b) 4
(c) $m=5$
13. Yes.
14. (a) $k=\frac{22}{3} \quad$ (b) $\{\mathbf{u}, \mathbf{v}\}$ (other answers possible) \quad (c) S is a plane with equation $5 x-y-3 z=0$.
15. S is not a subspace since it is not closed under addition, nor is it closed under scalar multiplication. (There exist many possible counter-examples that can be provided as justification in each case, but only one counter-example to one of these two properties is necessary in order to obtain full marks.)
16. (a) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\} \quad$ (b) 4
17. (a) CANNOT
(b) MIGHT
18. (a) $\left[\begin{array}{r}4 / 5 \\ 0 \\ 3 / 5\end{array}\right]$
(b) $\mathbf{u}_{4}=-4 \mathbf{u}_{1}+5 \mathbf{u}_{2}$
(c) $\mathbf{u}_{\mathbf{2}}=\frac{4}{5} \mathbf{u}_{\mathbf{1}}+\frac{1}{5} \mathbf{u}_{\mathbf{4}}$
(d) (i) linearly independent,
(ii) linearly independent

$$
\text { (e) }\left\{\left[\begin{array}{l}
3 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
4 \\
-5 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

19. GO HOME
20. (a) $P=\left[\begin{array}{ll}0.7 & 0.4 \\ 0.3 & 0.6\end{array}\right]$
(b) 39%
(c) $\left[\begin{array}{l}4 / 7 \\ 3 / 7\end{array}\right]$
21. Max $z=32$ when $\left\{x=\frac{1}{4}, y=\frac{9}{2}, s_{1}=0, s_{2}=\frac{45}{2}, s_{3}=0\right\}$
