1. Solve each of the following systems or show that it is inconsistent.

(a)
$$\begin{cases} 2x + y - 3z = 4 \\ 2x + 8z = 16 \\ 5x + y + 9z = 21 \end{cases}$$

(b)
$$\begin{cases} 4x_1 + 5x_2 + 2x_3 = 18\\ 3x_1 + 4x_2 + x_3 = 11\\ 2x_1 + 5x_2 - 3x_3 = -12\\ x_2 - 2x_3 = -10 \end{cases}$$

- **2.** Given the matrix representation of a system as $\begin{bmatrix} -1 & 2 & 1 & 2 \\ 3 & -5 & -1 & -2 \\ 0 & 2 & 2h+5 & k+4 \end{bmatrix}$, find the value(s) of h and k, if any, for which the system has
 - (a) No solutions.
 - (b) Infinitely many solutions.
 - (c) A unique solution.
- **3.** Given that $A = \begin{bmatrix} 1 & 0 \\ -2 & 3 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 5 & -1 & -2 \\ 1 & 2 & 4 \\ -2 & 0 & 3 \end{bmatrix}$, and $C = \begin{bmatrix} -2 & 6 & -3 \\ 5 & 4 & -1 \end{bmatrix}$, find the following, if possible
 - (a) A^2
 - (b) *BA*
 - (c) $2A + C^T$
- **4.** Given that $D = \begin{bmatrix} 4 & 3 \\ -1 & 2 \end{bmatrix}$, $E = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$, find a matrix X such that:

$$(XD)^T = E$$

- 5. Given that $\begin{vmatrix} 4 & 7 & -2 \\ 2 & -5 & -2 \\ -3 & 8 & 6 \end{vmatrix} = -100,$ (a) evaluate $\begin{vmatrix} 0 & 0 & 0 & 2 \\ 4 & 7 & -2 & 0 \\ 2 & -5 & -2 & 0 \\ -3 & 8 & 6 & 0 \end{vmatrix}$
 - (b) use Cramer's Rule to solve for y only given the following system of equations: $\begin{cases} 4x + 7y 2z = 3 \\ 2x 5y 2z = -1 \\ -3x + 8y + 6z = 7 \end{cases}$
- **6.** Let A, B and C be 5×5 matrices such that $\det(A) = -4$, $\det(B) = \frac{1}{5}$ and $\det(C) = 3$. Find, if possible:
 - (a) $\det(A^T \cdot B^{-1} \cdot C)$
 - (b) $\det(C-3I)$
 - (c) $\det((2B)^{-1})$

- 7. Consider the matrix $\begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & -2 \\ 3 & 1 & -3 \end{bmatrix}$.
 - (a) Find adj(A).
 - (b) Calculate $A \cdot \operatorname{adj}(A)$.
 - (c) Use your previous work to find A^{-1} .
- **8.** Given the points A = (1, 2, 1), B = (-1, 5, 7) and C = (4, 2, 0),
 - (a) find the magnitude (length) of the vector \overrightarrow{AB}
 - (b) find **both** unit vectors parallel to \overrightarrow{AB} .
 - (c) find a vector equation for the plane through the points A, B and C.
 - (d) find an equation in general form (ax + by + cz = d) for the plane through the points A, B and C.
 - (e) find an equation of the line passing through the point A and perpendicular to the plane 4x y + 2z = 7.
- **9.** Is the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix} t + \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$ parallel, perpendicular or neither to the plane -x + 3y + z = 12?
- **10.** Given that z = -2x + y is a subspace of \mathbb{R}^3 ,
 - (a) find a basis for the above subspace.
 - (b) what is its dimension?
- **11.** Consider the set of vectors $\overrightarrow{u} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, $\overrightarrow{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, and $\overrightarrow{w} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}$.
 - (a) Write the vector $\overrightarrow{b} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$ as a linear combination of the the vectors \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} , if possible.
 - (b) Is the set $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ linearly independent or linearly dependent?
 - (c) Describe span $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$: Is it a point in \mathbb{R}^3 , a line in \mathbb{R}^3 , a plane in \mathbb{R}^3 , or all of \mathbb{R}^3 ? **Justify**.
 - (d) Provide a basis for span $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$.
 - (e) What is the dimension of span $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$?
- 12. Suppose $A = \begin{bmatrix} 3 & -4 & 10 & -1 & -2 \\ 6 & -7 & 19 & -2 & -4 \\ -2 & 4 & -8 & 1 & 3 \\ 3 & 2 & 4 & 0 & 3 \end{bmatrix}$ which reduces to $R = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$,

Let $\overrightarrow{a_1}$ be the first column of A, $\overrightarrow{a_2}$ be the second column of A ...

- (a) Find a basis for Col(A).
- (b) Write $\overrightarrow{a_3}$ as a linear combination of $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ and $\overrightarrow{a_4}$ if possible.
- (c) Write $\overrightarrow{a_5}$ as a linear combination of $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ and $\overrightarrow{a_3}$ if possible.
- (d) Find a basis for Null(A).
- (e) State the following sets as linearly independent or dependent.
 - i. $\{\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}\}$
 - ii. $\{\overrightarrow{a_2}, \overrightarrow{a_4}, \overrightarrow{a_5}\}$
 - iii. $\{\overrightarrow{a_1}, \overrightarrow{0}\}$

- 13. If B is a 4×6 matrix such that when reduced would have 3 pivots, find
 - (a) the Rank of B.
 - (b) the Nullity of B^T .
 - (c) the number of solutions to $B\overrightarrow{x} = \overrightarrow{0}$.
- 14. Complete the following sentences with the word MUST, MIGHT, or CANNOT, as appropriate:
 - (a) Two planes with parallel normal vectors ______ intersect.
 - (b) If the set of vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ is linearly dependent then there ______ be a linear combination of $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ to make $\overrightarrow{v_3}$.
 - (c) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 6 \end{bmatrix}$ then $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ _____ be in Null(A).
 - (d) If B is a 3×3 matrix such that Null(B) is a line then Col(B) be a plane.
- **15.** An economy has two industries: Math and Happiness. To produce \$1 of Math requires \$0.30 of Math and \$0.50 of Happiness. To produce \$1 of Happiness \$0.70 of Math and \$0.40 of Happiness.
 - (a) Find a consumption matrix C associated with this economy.
 - (b) Which industries, if any, are profitable? Justify your answer.
 - (c) Given an external demand for \$1890 of Math and \$945 of Happiness, how much of each industry should be produced to meet it?
 - (d) Find the internal consumption when the demand is met.
- 16. On a dystopic tropical island, a group of hostages are forced to compete each day in The Octopus Games. It has been established over time that if a player wins in a game one day, there is a 60 % chance that they will again win the game played the next day. However, if the player loses in a game one day, there is a 80 % chance that they will lose again at the next day's game.

(Note that unlike in the Squid Games, players are not eliminated when they lose. Whew!)

- (a) What is a transition matrix P that describes this Markov chain?
- (b) On one Tuesday, 25 % of the players won while 75 % lost. What proportion will win at Thursday's game?
- (c) Find a steady-state vector \overrightarrow{q} for this Markov chain. Use fractions in your answer.
- (d) In the long-run, what proportion of players will lose?

These tables may come in handy:

A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

a	1	3	5	7	9	11	15	17	19	21	23	25
a^{-1}	1	9	21	15	3	19	7	23	11	5	17	25

- 17. The answer to the riddle was encrypted using the matrix: $B = \begin{bmatrix} 7 & 2 \\ 3 & 3 \end{bmatrix}$
 - (a) Find the decryption matrix B^{-1} and verify your answer using matrix multiplication.
 - (b) Decode the ciphertext below (in its entirety) to reveal the answer to:

The most watched Netflix show by aquatic animals is: _____ Game

TIOPVF

Solutions:

- 1. (a) No solution
 - (b) (5,-2,4)
- **2.** (a) $h = -1/2, k \neq 4$
 - (b) h = -1/2, k = 4
 - (c) $h \neq -1/2$
- **3.** (a) does not exist
 - (b) $\begin{bmatrix} 9 & -7 \\ -7 & 14 \\ -5 & 6 \end{bmatrix}$
 - (c) $\begin{bmatrix} 0 & 5 \\ 2 & 10 \\ -5 & 3 \end{bmatrix}$
- **4.** $X = \frac{1}{11} \begin{bmatrix} 4 & 5 \\ 5 & 9 \end{bmatrix}$
- **5.** (a) 200
 - (b) $y = \frac{-8}{-100} = \frac{2}{25}$
- **6.** (a) -60
 - (b) Can't tell
 - (c) $\frac{5}{32}$
- 7. (a) $\operatorname{adj}(A) = \begin{bmatrix} 2 & -3 & 2 \\ 0 & -3 & 2 \\ 2 & -4 & 2 \end{bmatrix}$.
 - (b) $A \operatorname{adj}(A) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
 - (c) $A^{-1} = \frac{1}{2} \begin{bmatrix} 2 & -3 & 2 \\ 0 & -3 & 2 \\ 2 & -4 & 2 \end{bmatrix}$
- **8.** (a) 7
 - (b) $\frac{1}{7}\langle -2, 3, 6 \rangle$ and $\frac{-1}{7}\langle -2, 3, 6 \rangle$
 - (c) (x, y, z) = (-2, 3, 6)t + (5, -3, -7)s + (1, 2, 1) or equivalent
 - (d) -3x + 16y 9z = 20
 - (e) (x, y, z) = (4, -1, 2)t + (1, 2, 1) or equivalent
- 9. Parallel

10. (a)
$$\left\{ \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

- (b) 2
- 11. (a) Not possible
 - (b) Linearly dependant
 - (c) A Plane
 - (d) $\{\overrightarrow{u}, \overrightarrow{v}\}.$
 - (e) 2

12. (a)
$$\left\{ \begin{bmatrix} 3 \\ 6 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} -4 \\ -7 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 or equivalent

- (b) $\overrightarrow{a_3} = 2\overrightarrow{a_1} \overrightarrow{a_2}$
- (c) Not possible.

(d)
$$\left\{ \begin{bmatrix} -2\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\-5\\1 \end{bmatrix} \right\}$$

- (e) i. Linearly Dependant
 - ii. Linearly Independent
 - iii. Linearly Dependant
- **13.** (a) 3
 - (b) 1
 - (c) infinite
- **14.** (a) MIGHT
 - (b) MIGHT
 - (c) MUST
 - (d) MUST

15. (a)
$$C = \begin{bmatrix} 0.3 & 0.7 \\ 0.5 & 0.4 \end{bmatrix}$$

- (c) \$ 25650 of Math, \$ 22950 of Happiness
- (d) \$ 23760 of Math, \$ 22005 of Happiness

16. (a)
$$\begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.8 \end{bmatrix}$$

- (b) 32 %
- (c) $\mathbf{q} = (\frac{1}{3}, \frac{2}{3})$ (d) $\frac{2}{3}$

17. (a)
$$B^{-1} = \begin{bmatrix} 21 & 12 \\ 5 & 23 \end{bmatrix}$$

(b) HUMAN