1. Solve each of the following systems or show that it is inconsistent.
(a) $\left\{\begin{array}{l}2 x+y-3 z=4 \\ 2 x+8 z=16 \\ 5 x+y+9 z=21\end{array}\right.$
(b) $\left\{\begin{aligned} 4 x_{1}+5 x_{2}+2 x_{3}= & 18 \\ 3 x_{1}+4 x_{2}+x_{3} & =11 \\ 2 x_{1}+5 x_{2}-3 x_{3} & =-12 \\ x_{2}-2 x_{3} & =-10\end{aligned}\right.$
2. Given the matrix representation of a system as $\left[\begin{array}{rrc|c}-1 & 2 & 1 & 2 \\ 3 & -5 & -1 & -2 \\ 0 & 2 & 2 h+5 & k+4\end{array}\right]$, find the value(s) of h and k, if any, for which the system has
(a) No solutions.
(b) Infinitely many solutions.
(c) A unique solution.
3. Given that $A=\left[\begin{array}{cc}1 & 0 \\ -2 & 3 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{ccc}5 & -1 & -2 \\ 1 & 2 & 4 \\ -2 & 0 & 3\end{array}\right]$, and $C=\left[\begin{array}{ccc}-2 & 6 & -3 \\ 5 & 4 & -1\end{array}\right]$,
find the following, if possible.
(a) A^{2}
(b) $B A$
(c) $2 A+C^{T}$
4. Given that $D=\left[\begin{array}{cc}4 & 3 \\ -1 & 2\end{array}\right], E=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, find a matrix X such that:

$$
(X D)^{T}=E
$$

5. Given that $\left|\begin{array}{ccc}4 & 7 & -2 \\ 2 & -5 & -2 \\ -3 & 8 & 6\end{array}\right|=-100$,
(a) evaluate $\left|\begin{array}{cccc}0 & 0 & 0 & 2 \\ 4 & 7 & -2 & 0 \\ 2 & -5 & -2 & 0 \\ -3 & 8 & 6 & 0\end{array}\right|$
(b) use Cramer's Rule to solve for y only given the following system of equations: $\left\{\begin{array}{rr}4 x+7 y-2 z & =3 \\ 2 x-5 y-2 z & =-1 \\ -3 x+8 y & +6 z=7\end{array}\right.$
6. Let A, B and C be 5×5 matrices such that $\operatorname{det}(A)=-4, \operatorname{det}(B)=\frac{1}{5}$ and $\operatorname{det}(C)=3$. Find, if possible:
(a) $\operatorname{det}\left(A^{T} \cdot B^{-1} \cdot C\right)$
(b) $\operatorname{det}(C-3 I)$
(c) $\operatorname{det}\left((2 B)^{-1}\right)$
7. Consider the matrix $\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 0 & -2 \\ 3 & 1 & -3\end{array}\right]$.
(a) Find $\operatorname{adj}(A)$.
(b) Calculate $A \cdot \operatorname{adj}(A)$.
(c) Use your previous work to find A^{-1}.
8. Given the points $A=(1,2,1), B=(-1,5,7)$ and $C=(4,2,0)$,
(a) find the magnitude (length) of the vector $\overrightarrow{A B}$
(b) find both unit vectors parallel to $\overrightarrow{A B}$.
(c) find a vector equation for the plane through the points A, B and C.
(d) find an equation in general form $(a x+b y+c z=d)$ for the plane through the points A, B and C.
(e) find an equation of the line passing through the point A and perpendicular to the plane $4 x-y+2 z=7$.
9. Is the line $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ 2 \\ -5\end{array}\right] t+\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right]$ parallel, perpendicular or neither to the plane $-x+3 y+z=12$?
10. Given that $z=-2 x+y$ is a subspace of \mathbb{R}^{3},
(a) find a basis for the above subspace.
(b) what is its dimension?
11. Consider the set of vectors $\vec{u}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right], \vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\vec{w}=\left[\begin{array}{l}3 \\ 5 \\ 8\end{array}\right]$.
(a) Write the vector $\vec{b}=\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]$ as a linear combination of the the vectors \vec{u}, \vec{v} and \vec{w}, if possible.
(b) Is the set $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent or linearly dependent?
(c) Describe $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$: Is it a point in \mathbb{R}^{3}, a line in \mathbb{R}^{3}, a plane in \mathbb{R}^{3}, or all of \mathbb{R}^{3} ? Justify.
(d) Provide a basis for $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$.
(e) What is the dimension of $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$?
12. Suppose $A=\left[\begin{array}{ccccc}3 & -4 & 10 & -1 & -2 \\ 6 & -7 & 19 & -2 & -4 \\ -2 & 4 & -8 & 1 & 3 \\ 3 & 2 & 4 & 0 & 3\end{array}\right]$ which reduces to $R=\left[\begin{array}{ccccc}1 & 0 & 2 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, Let $\overrightarrow{a_{1}}$ be the first column of $A, \overrightarrow{a_{2}}$ be the second column of $A \ldots$
(a) Find a basis for $\operatorname{Col}(A)$.
(b) Write $\overrightarrow{a_{3}}$ as a linear combination of $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ and $\overrightarrow{a_{4}}$ if possible.
(c) Write $\overrightarrow{a_{5}}$ as a linear combination of $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$ and $\overrightarrow{a_{3}}$ if possible.
(d) Find a basis for $\operatorname{Null}(A)$.
(e) State the following sets as linearly independent or dependent.
i. $\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}\right\}$
ii. $\left\{\overrightarrow{a_{2}}, \overrightarrow{a_{4}}, \overrightarrow{a_{5}}\right\}$
iii. $\left\{\overrightarrow{a_{1}}, \overrightarrow{0}\right\}$
13. If B is a 4×6 matrix such that when reduced would have 3 pivots, find
(a) the Rank of B.
(b) the Nullity of B^{T}.
(c) the number of solutions to $B \vec{x}=\overrightarrow{0}$.
14. Complete the following sentences with the word MUST, MIGHT, or CANNOT, as appropriate:
(a) Two planes with parallel normal vectors \qquad intersect.
(b) If the set of vectors $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is linearly dependent then there \qquad be a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ to make $\overrightarrow{v_{3}}$.
(c) If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 6\end{array}\right]$ then $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right] \square$ be in $\operatorname{Null}(A)$.
(d) If B is a 3×3 matrix such that $\operatorname{Null}(B)$ is a line then $\operatorname{Col}(B)$ \qquad be a plane.
15. An economy has two industries: Math and Happiness. To produce $\$ 1$ of Math requires $\$ 0.30$ of Math and $\$ 0.50$ of Happiness. To produce $\$ 1$ of Happiness $\$ 0.70$ of Math and $\$ 0.40$ of Happiness.
(a) Find a consumption matrix C associated with this economy.
(b) Which industries, if any, are profitable? Justify your answer.
(c) Given an external demand for $\$ 1890$ of Math and $\$ 945$ of Happiness, how much of each industry should be produced to meet it?
(d) Find the internal consumption when the demand is met.
16. On a dystopic tropical island, a group of hostages are forced to compete each day in The Octopus Games. It has been established over time that if a player wins in a game one day, there is a 60% chance that they will again win the game played the next day. However, if the player loses in a game one day, there is a 80% chance that they will lose again at the next day's game.
(Note that unlike in the Squid Games, players are not eliminated when they lose. Whew!)
(a) What is a transition matrix P that describes this Markov chain?
(b) On one Tuesday, 25% of the players won while 75% lost. What proportion will win at Thursday's game?
(c) Find a steady-state vector \vec{q} for this Markov chain. Use fractions in your answer.
(d) In the long-run, what proportion of players will lose?

These tables may come in handy:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

a	1	3	5	7	9	11	15	17	19	21	23	25
a^{-1}	1	9	21	15	3	19	7	23	11	5	17	25

17. The answer to the riddle was encrypted using the matrix: $B=\left[\begin{array}{ll}7 & 2 \\ 3 & 3\end{array}\right]$
(a) Find the decryption matrix B^{-1} and verify your answer using matrix multiplication.
(b) Decode the ciphertext below (in its entirety) to reveal the answer to:

The most watched Netflix show by aquatic animals is: \qquad Game TIOPVF

Solutions:

1. (a) No solution
(b) $(5,-2,4)$
2. (a) $h=-1 / 2, k \neq 4$
(b) $h=-1 / 2, k=4$
(c) $h \neq-1 / 2$
3. (a) does not exist
(b) $\left[\begin{array}{cc}9 & -7 \\ -7 & 14 \\ -5 & 6\end{array}\right]$
(c) $\left[\begin{array}{cc}0 & 5 \\ 2 & 10 \\ -5 & 3\end{array}\right]$
4. $X=\frac{1}{11}\left[\begin{array}{ll}4 & 5 \\ 5 & 9\end{array}\right]$
5. (a) 200
(b) $y=\frac{-8}{-100}=\frac{2}{25}$
6. (a) -60
(b) Can't tell
(c) $\frac{5}{32}$
7. (a) $\operatorname{adj}(A)=\left[\begin{array}{lll}2 & -3 & 2 \\ 0 & -3 & 2 \\ 2 & -4 & 2\end{array}\right]$.
(b) $A \operatorname{adj}(A)=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
(c) $A^{-1}=\frac{1}{2}\left[\begin{array}{lll}2 & -3 & 2 \\ 0 & -3 & 2 \\ 2 & -4 & 2\end{array}\right]$
8. (a) 7
(b) $\frac{1}{7}\langle-2,3,6\rangle$ and $\frac{-1}{7}\langle-2,3,6\rangle$
(c) $(x, y, z)=(-2,3,6) t+(5,-3,-7) s+(1,2,1)$ or equivalent
(d) $-3 x+16 y-9 z=20$
(e) $(x, y, z)=(4,-1,2) t+(1,2,1)$ or equivalent
9. Parallel
10. (a) $\left\{\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$
(b) 2
11. (a) Not possible
(b) Linearly dependant
(c) A Plane
(d) $\{\vec{u}, \vec{v}\}$.
(e) 2
12. (a) $\left\{\left[\begin{array}{c}3 \\ 6 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{c}-4 \\ -7 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right]\right\}$ or equivalent
(b) $\overrightarrow{a_{3}}=2 \overrightarrow{a_{1}}-\overrightarrow{a_{2}}$
(c) Not possible.
(d) $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ -5 \\ 1\end{array}\right]\right\}$
(e) i. Linearly Dependant
ii. Linearly Independant
iii. Linearly Dependant
13. (a) 3
(b) 1
(c) infinite
14. (a) MIGHT
(b) MIGHT
(c) MUST
(d) MUST
15. (a) $C=\left[\begin{array}{ll}0.3 & 0.7 \\ 0.5 & 0.4\end{array}\right]$
(b) Math
(c) $\$ 25650$ of Math, $\$ 22950$ of Happiness
(d) $\$ 23760$ of Math, $\$ 22005$ of Happiness
16. (a) $\left[\begin{array}{ll}0.6 & 0.2 \\ 0.4 & 0.8\end{array}\right]$
(b) 32%
(c) $\mathbf{q}=\left(\frac{1}{3}, \frac{2}{3}\right)$
(d) $\frac{2}{3}$
17. (a) $B^{-1}=\left[\begin{array}{rr}21 & 12 \\ 5 & 23\end{array}\right]$
(b) HUMAN
