Question 1: (10 pts) For the function $f(x)$ given in the graph below, find each of the following limits. Write DNE, $-\infty$ or $+\infty$ where appropriate.
a) $\lim _{x \rightarrow-\infty} f(x)=$

b) $\lim _{x \rightarrow-1^{-}} f(x)=$
c) $\lim _{x \rightarrow 0^{+}} f(x)=$
d) $\lim _{x \rightarrow-1^{+}} f(x)=$
e) $\lim _{x \rightarrow 3} f(x)=$
f) $\lim _{x \rightarrow 2} f(x)=$
g) $\lim _{x \rightarrow 0^{-}} f(x)=$
h) $\lim _{x \rightarrow+\infty} f(x)=$
i) List the points of discontinuity

Question 2: (5 pts) Solve the following system of equations for each unknown:

$$
\left\{\begin{aligned}
2 x+4 y+8 z & =-6 \\
-2 x+6 z & =0 \\
-5 x-7 y-11 z & =9
\end{aligned}\right.
$$

Question 3: (6 pts) Solve the following equations for x :
a) $\log _{3}(2 x+3)+\log _{3}(x-2)=2$
b) $8^{x+1}=\left(\frac{1}{32}\right)^{2 x-5}$

Question 4: (8 pts) Consider the electrical circuit below:

- The current is $I=0.450 \mathrm{~A}$ (with a frequency of 50.0 Hz);

- The capacitance is $C=84.2 \times 10^{-6} \mathrm{~F}$;
- The resistance is $R=45.2 \Omega$;
- The inductance is $L=61.4 \times 10^{-3} \mathrm{H}$;
a) Determine the voltage across the capacitor (between points a and b).
b) Determine the voltage across the inductor (between points c and d).
c) Determine the voltage across the CRL combination (between points a and d).
d) Determine if the voltage leads or lags the current, and by what angle.

Question 5: (6 pts) Perform the indicated operations, and write your answers in the rectangular form $x+y j$.
a) $\left(3+5 j^{7}-j^{14}+2 j^{21}\right)\left(2 j^{24}-j^{35}\right)$
b) $\frac{6-j}{4-j}+\frac{3+2 j}{1+4 j}$

Question 6: (4 $\boldsymbol{p t s}$) Use DeMoivre's Theorem to find all the cubic roots of $-2+3 j$. Write your answers in rectangular form $x+y j$. (Round to 3 decimals)

Question 7: (4 pts) Consider the 3 following vectors:

- Vector A has a magnitude of 53.1, and a direction of $28.5^{\circ} \mathrm{N}$ of W ;
- Vector B has a magnitude of 32.7 , and a direction of $43.9^{\circ} \mathrm{S}$ of E ;
- Vector C has a magnitude of 44.6 , and a direction of $71.3^{\circ} \mathrm{N}$ of E ;

Find the magnitude and the direction of the resultant vector obtained by adding A, B and C.

Question 8: (5 pts) Three pipes with radii $2.50 \mathrm{~cm}, 3.25 \mathrm{~cm}$ and 4.25 cm are welded together lengthwise (see picture for cross-section). Find all three angles between the lines connecting the centers.

Question 9: (3 pts) What is the area of a paper label that is used to cover the lateral surface of a cylindrical can 8.50 cm in diameter and 11.5 cm high? The ends of the label must overlap 0.50 cm when the label is placed on the can.

Question 10: (4 pts) Find the equation of the tangent line to the graph of $x y^{2}+3 x^{2}-y^{2}+15=0$ at the point $(-1,3)$.

Question 11: (4 pts) Consider the function $f(x)=-7 \cos (3 x-9)$. Find:
a) the amplitude of the function.
b) the period of the function.
c) the frequency of the function.
d) the phase shift of the function.

Question 12: (3 pts) Solve for z only, using Cramer's rule: $\left\{\begin{aligned} 5 x-3 y+4 z & =-2 \\ 3 x+2 y-z & =5 \\ x-5 y-3 z & =-7\end{aligned}\right.$

Question 13: ($6 \boldsymbol{p t s}$) Solve the following equations for x such that $0 \leqslant x<2 \pi$. Round your answers to 4 decimals.
a) $2 \cos ^{2}(x)+7 \cos (x)=4-2 \sin ^{2}(x)$
b) $\tan (x)=5 \cot (x)$

Question 14: (12 pts) Evaluate the following limits:
a) $\lim _{x \rightarrow 4} \frac{x^{3}-7 x^{2}+9 x+12}{x^{2}-3 x-4}$
b) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{5-\sqrt{3 x^{2}+13}}$
c) $\lim _{x \rightarrow-\infty} \frac{(3 x+2)\left(4-5 x^{2}\right)}{2-x^{4}}$
d) $\lim _{x \rightarrow 3} \frac{4 x+5}{x^{3}-4 x^{2}-3 x+18}$

Question 15: (5 pts) The number n of grams of a compound formed during a chemical reaction is given by $n=\frac{2 t}{t+1}$, where t is the time (in minutes) after the start of the reaction. Evaluate $\frac{d^{2} n}{d t^{2}}$ at $t=4.00 \mathrm{~min}$.

Question 16: (15 pts) Find y^{\prime}. Do not simplify your answers.
a) $y=3+7 x^{4}-\frac{4}{\sqrt[5]{x}}+\ln (\pi)$
b) $\cot \left(x^{2} y\right)=y e^{x}$
c) $y=\frac{\cos (x) \sin \left(x^{2}\right)}{\left(2 x^{2}+5\right)^{3}}$
d) $y=\log _{\pi}\left(4 x^{3}+11\right)-7^{\tan (x)}$
e) $y=\ln \left(\frac{(6 x-5)^{7} \csc (x)}{(3 x+8)^{4} \sqrt[9]{x^{2}+1}}\right) \quad$ Hint: Simplify using properties of \ln before differentiating.

ANSWERS:

1.) a) -2
b) 2
c) 1
d) 0
e) 1
f) DNE
g) $-\infty$
h) 3 i) $-1,0,2,3$
2.) $x=3, y=-5, z=1$
3.) a) 3
b) $\frac{22}{13}$
4.) a) 17.0 V
b) 8.69 V
c) 22.0 V
d) Lags by -22.3°
5.) a) $11-2 j$
b) $\frac{36}{17}-\frac{8}{17} j$
6.) $1.153+1.011 j,-1.452+0.493 j, \quad 0.299-1.504 j$
7.) $45.8 \angle 101.1^{\circ}$
8.) $47.3^{\circ}, 59.5^{\circ}, 73.2^{\circ}$
$\begin{array}{ll}\text { 9.) } 313 \mathrm{~cm}^{2} & \text { 10.) } y=\frac{1}{4} x+\frac{13}{4}\end{array}$
11.) a) 7
b) $\frac{2 \pi}{3}$
c) $\frac{3}{2 \pi}$
d) 3
12.) $\frac{-11}{147}$
13.) a) $1.2810,5.0021$
b) $1.1503,1.9913,4.2919,5.1329$
14.) a) $\frac{1}{5}$
b) $\frac{-10}{3}$
c) 0
d) $+\infty$
15.) $\frac{-4}{125} \mathrm{~g} / \min ^{2}$
16.) a) $28 x^{3}+\frac{4}{5 \sqrt[5]{x^{6}}}$
b) $\frac{-y e^{x}-2 x y \csc ^{2}\left(x^{2} y\right)}{e^{x}+x^{2} \csc ^{2}\left(x^{2} y\right)}$
c) $\frac{\left[2 x \cos (x) \cos \left(x^{2}\right)-\sin (x) \sin \left(x^{2}\right)\right]\left(2 x^{2}+5\right)-12 x \cos (x) \sin \left(x^{2}\right)}{\left(2 x^{2}+5\right)^{4}}$
d) $\frac{12 x^{2}}{\left(4 x^{3}+11\right) \ln (\pi)}-7^{\tan (x)} \ln (7) \sec ^{2}(x)$
e) $\frac{42}{6 x-5}-\cot (x)-\frac{12}{3 x+8}-\frac{2 x}{9\left(x^{2}+1\right)}$

