(6) 1. Solve the following system of equations for y only , using Cramer's Rule.

$$
\begin{aligned}
x+y-z= & -1 \\
2 x+4 y+5 z= & 0 \\
x+y+z= & 1
\end{aligned}
$$

2. Google's self-driving car uses a laser and detects a pedestrian a distance of 15.8 m away. A split second later (assume the car has not moved), the laser rotates by 36.2° and detects a street light pole 12.13 m away. How far is the pedestrian from the street light pole? (Round appropriately, assuming accuracy is preserved in trigonometric functions.)

(5) 3. Consider the function $y=-5 \sin \left(\frac{x}{3}-\frac{\pi}{6}\right)+2$.
(a) What is the period of the function?
(b) What is the amplitude of the function?
(c) What is the phase shift of the function?
(d) What is the mid-line of the function?
(5)
3. Solve the equation for $0 \leq x<2 \pi$:

$$
\begin{equation*}
\sin (2 x)-\cos x=0 \tag{8}
\end{equation*}
$$

5. Find all the possible solutions of the following equations:
(a) $4^{4-3 x}=32^{2 x+3}$
(b) $\log _{2}(x)+\log _{2}(x+2)=\log _{2}(x+6)$
(6) 6. Evaluate the following, and give your answer in the rectangular form $x+y j$.
(a) $2 j^{6}(6-3 j)\left(j^{4}+j^{3}\right)=$
(b) $\frac{4 j}{1-2 j}=$
6. Evaluate the following and give your answer in polar form with $0 \leq \theta<360^{\circ}$.
(a) $\frac{\left(63 \angle 141^{\circ}\right)\left(5 \angle 57^{\circ}\right)}{9 \angle 98^{\circ}}=$
(b) $\left(2\left(\cos \left(55^{\circ}\right)+j \sin \left(55^{\circ}\right)\right)^{9}=\right.$
(c) $1.5 \angle 37.5^{\circ}+3.8 \angle 146.2^{\circ}=$
(8) 8. Consider the electrical circuit below:

- The current is $I=0.250 \mathrm{~A}$ (with a frequency of 50.0 Hz);
- The resistance is $R=45.0 \Omega$;
- The inductance is $L=2.05 \mathrm{H}$;
- The capacitance is $C=95.2 \mu \mathrm{~F}$;
(a) Determine the reactance of the inductor X_{L}.
(b) Determine the reactance of the capacitor X_{C}.
(c) Determine the impedance Z.
(d) Determine the magnitude of the voltage across the RLC combination (between points a and d).
(e) Determine if the voltage leads or lags the current, and by what angle.
(5) 9. For the function f given in the diagram below, find each of the following, indicating $D N E$ or ∞ or $-\infty$ or undefined, as appropriate.

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)= \\
& \lim _{x \rightarrow 5^{+}} f(x)= \\
& \lim _{x \rightarrow 5} f(x)= \\
& \lim _{x \rightarrow 2} f(x)= \\
& \lim _{x \rightarrow 0} f(x)= \\
& f(0)=
\end{aligned}
$$

(14) 10. Evaluate the following limits:
(a) $\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-x-2}$
(b) $\lim _{x \rightarrow 3} \frac{x-3}{x^{3}-27}$
(c) $\lim _{x \rightarrow \infty} \frac{(5 x+1)(2 x-1)}{3 x^{2}+2 x-5}$
(d) $\lim _{x \rightarrow 7^{-}} \frac{x-12}{x-7}$
(5) 11. Find the derivative of $f(x)=x^{2}+3 x$, using only the limit definition of the derivative.
(17) 12. Find the derivative of the following functions. Do not simplify your answers.
(a) $y=\frac{4}{5 \sqrt[3]{x^{4}}}-3^{x}+2 \ln (7 x)-\log _{7} 4$
(b) $y=\left(\frac{\cot x+\cos x}{3 x^{2}+x+1}\right)^{5}$
(c) $y=5 e^{x^{3}} \sin ^{2}(3 x-2)$
(d) $y=\ln \left(\sqrt{x^{4}+5} \sec (2 x) \tan ^{4}\left(x^{5}\right)\right)$ (Simplify first using properties of the logarithm.)
(6) 13. Consider the following implicit equation.

$$
6 x^{2}+3 x y+2 y^{2}+17 y=6
$$

(a) Find y^{\prime} using implicit differentiation.
(b) Find an equation of the tangent line to the curve at $(-1,0)$.

ANSWERS

1. $y=-5 / 2$
2. 9.4 m
3. (a) 6π
(b) $|a|=5$
(c) $\pi / 2$
(d) $y=2$
4. $x=\pi / 6, \pi / 2,5 \pi / 6,3 \pi / 2$
5. (a) $x=-7 / 16$
(b) $x=2$
6. (a) $-6+18 j$
(b) $-\frac{8}{5}+\frac{4}{5} j$
7. (a) $35 \angle 100^{\circ}$
(b) $512 \angle 135^{\circ}$
(c) $3.6 \angle 123^{\circ}$
8.

(a) $X_{L}=644 \Omega$
(b) $X_{C}=33.4 \Omega$
(c) $Z=45.0+611 j$
(d) $|V|=153 \mathrm{~V}$
(e) $\theta=85.8^{\circ}$ so the voltage leads the current by 85.8°
9. $\lim _{x \rightarrow 5^{-}} f(x)=2, \quad \lim _{x \rightarrow 5^{+}} f(x)=-2, \quad \lim _{x \rightarrow 5} f(x)=$ DNE
$\lim _{x \rightarrow 2} f(x)=\infty, \quad \lim _{x \rightarrow 0} f(x)=-1, \quad f(0)=$ undefined
10. (a) $1 / 3$ (b) $1 / 27$ (c) $10 / 3 \quad$ (d) ∞
11. Show that $\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}+3(x+h)-\left(x^{2}+3 x\right)}{h}=\cdots=2 x+h+3$.

Therefore the limit as h approaches zero is $f^{\prime}(x)=2 x+3$.
12. (a) $y^{\prime}=-\frac{16}{15} x^{-7 / 3}-3^{x} \ln 3+\frac{2}{x}$
(b) $y^{\prime}=5\left(\frac{\cot x+\cos x}{3 x^{2}+x+1}\right)^{4}\left(\frac{\left(-\csc ^{2} x-\sin x\right)\left(3 x^{2}+x+1\right)-(\cot x+\cos x)(6 x+1)}{\left(3 x^{2}+x+1\right)^{2}}\right)$
(c) $y^{\prime}=5\left(3 x^{2} e^{x^{3}} \sin ^{2}(3 x-2)+6 e^{x^{3}} \sin (3 x-2) \cos (3 x-2)\right)$
(d) $y^{\prime}=\frac{4 x^{3}}{2\left(x^{4}+5\right)}+\frac{2 \sec (2 x) \tan (2 x)}{\sec (2 x)}+\frac{4 \sec ^{2}\left(x^{5}\right)\left(5 x^{4}\right)}{\tan \left(x^{5}\right)}=\frac{2 x^{3}}{x^{4}+5}+2 \tan (2 x)+\frac{20 x^{4} \sec ^{2}\left(x^{5}\right)}{\tan \left(x^{5}\right)}$
13. (a) $y^{\prime}=-\frac{12 x+3 y}{3 x+4 y+17} \quad$ (b) $y=\frac{6}{7} x+\frac{6}{7}$

