

December 2015

MATHEMATICAL MODELS 201-115-AB

Instructors: R.Masters and A. Panassenko

STUDENT NAME:	
STUDENT NUMBER:	
Instructor:	

Instructions

- 1. Do not open this booklet before the examination begins.
- 2. Check that this booklet contains 5 pages, excluding this cover page and the formula sheet.
- 3. Write all of your solutions in this booklet and show all supporting work.
- 4. If the space provided is not sufficient, continue the solution on the opposite page.

(10) **1.** For the function f(x) given in the diagram below, find each of the following limits. If the limit does not exist, write DNE or $-\infty$ or ∞ where appropriate. If the function is undefined at a point write UND.

(a)
$$f(-1) =$$

$$(f) \lim_{x \to 0} f(x) = \underline{\hspace{1cm}}$$

(b)
$$f(0) =$$

(c)
$$\lim_{x \to -1^{-}} f(x) =$$

(g)
$$\lim_{x \to -\infty} f(x) =$$

(d)
$$\lim_{x \to -1^+} f(x) =$$

(h)
$$\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$$

(e)
$$\lim_{x \to 2} f(x) =$$

- (i) List points of discontinuity
- (4) **2.** An ice cream parlor wants to make a giant ice cream cone to advertise their shop. It will consist of an inverted cone, with half a sphere on top. If the radius of the sphere is 1.0m, and the total height of the ice cream 4.5m, find the total volume of the ice cream cone.
 - **3.** Perform the indicated operation and express your answer in rectangular form a + bj.

(3) (a)
$$\frac{5j - (3-j)}{4-2j}$$

(3) (b)
$$(2j^5)(6-3j)(4+3j)$$

(4) 4. Solve the following system of equations for z only, using Cramer's Rule

5. Evaluate the following limits if possible.

(3) (a)
$$\lim_{x \to \infty} \frac{-2x^2 - 3x}{\sqrt{16x^4 - x}}$$

(3) (b)
$$\lim_{x \to 5} \frac{\frac{1}{x} - \frac{1}{5}}{5 - x}$$

(3) (c)
$$\lim_{x \to -3} \frac{x+3}{x^3+27}$$

(3) (d)
$$\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x}$$

6. Perform the indicated operations. Express the result in polar form.

(2) (a)
$$[3(\cos 60^{\circ} + j \sin 60^{\circ})][4(\cos 30^{\circ} + j \sin 30^{\circ})]$$

(4) (b)
$$(1.2 + 2.1j)^7$$
 Hint: use Demoivre's Theorem

(3) 7. Consider the function
$$f(x) = 4\sin\left(\frac{\pi}{3}x + \frac{\pi}{2}\right) - 1$$
.

- a) What is the amplitude?
- **b)** What is the period?
- c) What is the phase shift?

(4) **8.** 2 hikers start walking from the same spot. The first one walks at 4km/h, bearing 20° north of east. The second one walks at 6.5km/h, bearing 60° north of west. How far apart are they after 2 hours?

(4) 9. Find the equation of the tangent line to the curve $f(x) = \sin x + \sin^2 x$ at the point (0,0).

10. Solve the following for x.

(3) (a)
$$4^{5-7x} = \frac{1}{8^{x-2}}$$

(3) (b)
$$\log(x-1) + \log(x+4) = \log(x+11)$$

(4) 11. Solve the following system of equations for each unknown.

(4) **12.**

A crate has a weight of 70N. You and your friend are pulling on ropes attached to the crate. If you're pulling with a force $F_1 = 64$ N, what force F_2 and angle θ must your friend use in order for the crate to be at equilibrium?

13. Use the diagram below to determine;

- (2) 1. The voltage across the resistor (between points a and b)
- (2) 2. The voltage across the capacitor (between points b and c)
- (2) 3. The voltage across the combination (between points a and c)
- (2) 4. Does the voltage lag or lead the current? If so by what angle.
 - **14.** The voltage V induced in an inductor in an electric circuit is given by $V = L\left(\frac{d^2q}{dt^2}\right)$, where the constant L is the inductance (in H).
- (3) (a) Find an expression for the voltage if $q = \sqrt{2t+1} 1$.
- (1) (b) What is the voltage induced in a 3.00-H inductor when t = 4s?
- (3) **15.** At what point(s) is the tangent to the curve $y^2 = 2x^3$ perpendicular to the line $y = \frac{4}{3}x + \frac{1}{3}$?
 - 16. Find y'. (Do not simplify your answer)

(3) (a)
$$y = \sqrt{\cos\sqrt{x}} + \pi^e - 6x^5 + \log_4 7x$$

(3) (b)
$$\sin(xy) = x^2 - y^2$$

(3) (c)
$$y = \ln(2+3x^4) + 3^{x \tan x} + \frac{1}{x}$$

(3)
$$(d) y = \frac{(x^2+1)^4}{(2x+1)^3}$$

17. Solve the following equation for x such that $0 \le x < 2\pi$.

(3) (a)
$$2\cos^2(x) + 3\sin(x) - 3 = 0$$

(3) (b)
$$\tan^2(x) = 2\sec^2(x) - 3$$

Mathematical Models 115: Formula Sheet Fall 2015

1. Volume of sphere:
$$V = \frac{4}{3}\pi r^3$$

2. Volume of cylinder:
$$V = \pi r^2 h$$

3. Volume of cone:
$$V = \frac{1}{3}\pi r^2 h$$

5. Rectangular:
$$x + yj$$

6. Polar:
$$r(\cos \theta + j \sin \theta) = r \angle \theta$$

7. Exponential:
$$re^{j\theta}$$

8.
$$x = r \cos \theta$$
 $y = r \sin \theta$ $\tan \theta = \frac{y}{x}$

9. DeMoivre's Theorem:
$$[r(\cos \theta + j \sin \theta)]^n = r^n(\cos n\theta + j \sin n\theta)$$

10.
$$V_R = IR$$

$$V_C = IX_C$$

$$V_L = IX_L$$

$$V_{RLC} = IZ$$

$$Z = R + j(X_L - X_C)$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$\theta = \tan^{-1} \frac{X_L - X_C}{R}$$

11.
$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

 $\log_b(xy) = \log_b x + \log_b y$

$$\log_b x^p = p \log_b x$$
$$\log_b b = 1$$
$$\log_b(1) = 0$$
$$x = \log_b y \Leftrightarrow b^x = y$$

12.
$$c^2 = a^2 + b^2 - 2ab \cos C$$

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

13.
$$(x^3 \pm y^3) = (x \pm y)(x^2 \mp xy + y^2)$$

14.
$$\sin^2 x + \cos^2 x = 1$$

 $1 + \tan^2 x = \sec^2 x$
 $1 + \cot^2 x = \csc^2 x$

15.
$$\sin 2x = 2\sin x \cos x$$
$$\cos 2x = \cos^2 x - \sin^x x$$

16.
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

17.
$$\frac{d}{dx}(fg) = f'g + fg'$$

18.
$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}$$

$$19. \ \frac{d}{dx}(x^n) = nx^{n-1}$$

$$20. \ \frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$21. \ \frac{d}{dx}(cf) = cf'$$

Answers Fall 2015

1. (a) und

(f) -3

(b) 0

 $(g) \infty$

(c) 0

(d) -2.2

(h) 2

(e) DNE

(i) x = -1; 0; 2

2. $\frac{11\pi}{6}m^3$

3. $-\frac{61}{65}$

4. (a) -12 + 66i

(b) $-\frac{6}{5} + \frac{9}{10}j$

5. (a) $-\frac{1}{2}$

(b) $\frac{1}{27}$

(c) $\frac{1}{25}$

(d) $\frac{1}{6}$

6. (a) $12[\cos 90^{\circ} + j \sin 90^{\circ}]$

(b) $486[\cos 422.1^{\circ} + j \sin 422.1^{\circ}]$

7. (a) 4

(b) 6

(c) $-\frac{3}{2}$

8. 16.40 km

9. y = x

10. (a) x = 4/11

(b) x = 3

11. x = -21/4; y = -5/4; z = 7/4

12. $F_2 = 46.3N$

13. (a) $\pi/6$; $\pi/2$; $5\pi/6$

(b) $\pi/4$; $3\pi/4$; $5\pi/4$; $7\pi/4$

14. (a) $V_R = 12v$

(b) $V_C = 4.5v$

(c) $V_{RC} = 12.82v$

(d) $\theta = -20.56^{\circ}$; Lags

15. (a) $y' = -\frac{\sin\sqrt{x}}{4\sqrt{x}\cos\sqrt{x}} - 30x^4 + \frac{1}{x\ln 4}$

(b) $y' = \frac{2x - y\cos(xy)}{x\cos(xy) + 2y}$

(c) $y' = \frac{12x^3}{2+3x^4} + 3^{x \tan x} \cdot \ln 3 \cdot (\tan x + 1)$ $x\sec^2 x) - \frac{1}{r^2}$

(d) $\frac{2(x^2+1)^3[5x^2+4x-3]}{(2x+1)^4}$

16. (a) $q''(t) = -\frac{1}{(2t+1)^{3/2}}$

(b) $V = -\frac{1}{0}$