1. Evaluate the following integrals
a. $\int \frac{2 \sqrt{t}-3^{t} t^{2}+(2 t-1)^{2}}{t^{2}} d t$
b. $\int_{-2}^{3} 2|x-1| d x$
c. $\int_{0}^{\pi / 4} \frac{4 x+1}{\sec (3 x)} d x$
d. $\int \frac{x^{3}-4 x^{2}+5}{x-1} d x$
e. $\int_{e}^{e^{2}} \frac{3}{x(\ln x)^{4}} d x$
f. $\int \frac{3 \mathrm{x}^{2} \sec (2 x)-4 \tan (2 x)}{\sec (2 x)} d x$
g. $\int \frac{5 x^{2}-3 x+2}{x^{2}(x-1)} d x$
h. $\int\left(x^{2}-2\right) e^{-2 x} d x$
2. Given $f^{\prime \prime}(x)=60 \sqrt{x}-48 x ; f(1)=9 ; f(0)=-6$, find $f(x)$
3. Use the graph of $f(x)$ to evaluate the definite integrals:
a. $\int_{3}^{0} 2 f(x)-5 d x$
b. $\int_{-1}^{5} f(x) d x$
c. $\int_{-4}^{-1} f(x) d x$
4. The marginal cost for producing x bumper stickers
 for the local Math Club is given by $\frac{d C}{d x}=\frac{3}{\sqrt{x}}+1$. It costs $\$ 42$ to produce the first 9 stickers.
a. Find the cost function $\mathrm{C}(\mathrm{x})$.
b. What is the cost for producing 64 stickers for the Math Club ?
5. Consider the functions $f(x)=x^{3}+7 x^{2}-4$ and $g(x)=x+3$.
a. Find the points of intersection of the graphs of f and g.
b. Setup do not calculate the definite integral representing the area of the region bounded by the graphs of f and g.
6. Given the demand function $p(x)=\frac{40-x^{2}}{2}$ and the supply function $p(x)=3 x+12$
a. Find the equilibrium point.
b. Sketch and identify the regions representing the consumer and producer surpluses.
c. Calculate the consumer surplus.
7. Use Trapezoid rule with $\mathrm{n}=4$ to estimate $\int_{0}^{4} \frac{10}{\sqrt{x^{3}+8}} d x$. Your answer should be correct to 4 decimal places.
8. Find the function y that satisfies the differential equation $-y^{\prime}+6 e^{y}=4 e^{2 x+y}$ and passes through the point $(0,0)$.
9. A company's production N is increasing at a rate proportional to the product of the number N of units and the square of the time t in years. Initially, 8 units are produced. In one year, 16 units are expected. After two years, what will be the production?
10. Evaluate the limits using l'Hopital's Rule.
a. $\lim _{x \rightarrow 0} \frac{2 x-\sin (2 x)}{x-\sin (x)}$
b. $\lim _{x \rightarrow \pi} \frac{3 \sin (x)+2 \tan (3 x)}{4 \tan (2 x)-x+\pi}$
11. Evaluate the improper integrals.
a. $\int_{1}^{2} \frac{2 x^{2}+1}{\left(2 x^{3}+3 x-5\right)^{3}} d x$
b. $\int_{-\infty}^{0} \frac{e^{3 x}}{\left(3-e^{3 x}\right)^{2}} d x$
12. Find a formula for the $n^{\text {th }}$ term of the sequence $\left\{-\frac{5}{7}, \frac{10}{13},-\frac{20}{19}, \frac{40}{25},-\frac{80}{31}\right\}$
13. Determine whether the following sequences converge or diverge. If a sequence converges, find its limit. If sequence diverges, explain why.
a. $\quad a_{n}=\frac{(-1)^{n}(1-n)}{n^{2}+3}$
b. $\quad a_{n}=\frac{3^{n}+7}{n+1}$
14. Given $a_{n}=\frac{7 n^{2}(2 n+1)!}{(2 n+3)!}$
a. Does the sequence converge? Justify your answer
b. Does $\sum_{n=1}^{\infty} a_{n}$ converge?
15. Determine whether the following series converge or diverge. Identify which test you are using. In case of a convergent geometric or telescoping series, find the sum of the series.
a. $\sum_{n=0}^{\infty} \frac{2^{n+1}+3^{n}}{7^{n}}$
b. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$
c. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{5^{n+2}}$
d. $\sum_{n=2}^{\infty} \frac{n^{2.5}}{\sqrt{n}}$
16. John wants to give his daughter $\$ 25,000$ in 8 years to start her own business. How much should he invest monthly today at an annual interest rate of 2% compounded monthly to have the $\$ 25000$ in 8 years?

Answers

1. (a) $-\frac{4}{\sqrt{t}}-\frac{3^{t}}{\ln 3}+4 t-\frac{1}{t}-4 \ln |t|+c$
(b)13 (c)0.2175
(d) $\frac{x^{3}}{3}-\frac{3 x^{2}}{2}-3 x+2 \ln |x-1|+c$
$\begin{array}{ll}\text { (e) } \frac{7}{8} & \text { (f) } x^{3}+2 \cos (2 x)+c\end{array}$
(g) $\ln |x|+\frac{2}{x}+4 \ln |x-1|+c$
(h) $-\frac{1}{4} e^{-2 x}\left(2 x^{2}+2 x-3\right)+c$
2. $f(x)=16 x^{5 / 2}-8 x^{3}+7 x-6$
3.(a) 17
(b) $\frac{3}{2}$
(c) $-\left(\frac{\pi}{4}+3\right)$
3. $C(x)=6 \sqrt{x}+x+15$
(b) $\$ 127$
5.(a) $\pm 1,-7$
b) $\int_{-7}^{-1}\left(x^{3}+7 x^{2}-x-7\right) d x+\int_{-1}^{1}\left(x+7-x^{3}-7 x^{2}\right) d x$
4. (a) $(2,18)$
b)

(c)consumer surplus $\frac{8}{3}$
5. 9.8807
6. $y=-\ln \left(2 e^{2 x}-6 x-1\right)$
7. $N=2048$
8. (a) 8
(b) $\frac{3}{7}$
11.(a) diverges
(b) $\frac{1}{18}$
9. $(-1)^{n} 5 \frac{2^{n-1}}{6 n+1}$
13.(a)converges to 0
(b)Diverges
14.(a) converges to $\frac{7}{4}$
(b) no, it diverges by divergence test
15.(a)convergent geometric series, sum $=\frac{91}{20} \quad$ (b) convergent Telescoping series, sum $=\frac{3}{4}$
(c) converges by Ratio test d) divergent p series or the Nth term test.
10. $\$ 239.96$
