1. Evaluate the following integrals

a.
$$\int \frac{2\sqrt{t} - 3^t t^2 + (2t - 1)^2}{t^2} dt$$

b.
$$\int_{-2}^{3} 2|x-1| dx$$

$$c. \int_{0}^{\pi/4} \frac{4x+1}{\sec(3x)} dx$$

d.
$$\int \frac{x^3 - 4x^2 + 5}{x - 1} dx$$

e.
$$\int_{a}^{e^{2}} \frac{3}{x (\ln x)^{4}} dx$$

f.
$$\int \frac{3x^2 \sec(2x) - 4\tan(2x)}{\sec(2x)} dx$$

g.
$$\int \frac{5x^2 - 3x + 2}{x^2(x-1)} dx$$

h.
$$\int (x^2 - 2)e^{-2x} dx$$

- 2. Given $f''(x) = 60\sqrt{x} 48x$; f(1) = 9; f(0) = -6, find f(x)
- 3. Use the graph of f(x) to evaluate the definite integrals:

$$b. \int_{-1}^{5} f(x) dx$$

c.
$$\int_{-4}^{-1} f(x) dx$$

4. The marginal cost for producing x bumper stickers

for the local Math Club is given by $\frac{dC}{dx} = \frac{3}{\sqrt{x}} + 1$. It costs \$42 to produce the first 9 stickers.

- a. Find the cost function C(x).
- b. What is the cost for producing 64 stickers for the Math Club?
- 5. Consider the functions $f(x) = x^3 + 7x^2 4$ and g(x) = x + 3.
 - a. Find the points of intersection of the graphs of f and g.
 - b. Setup **do not calculate** the definite integral representing the area of the region bounded by the graphs of f and g.
- 6. Given the demand function $p(x) = \frac{40 x^2}{2}$ and the supply function p(x) = 3x + 12
 - a. Find the equilibrium point.
 - b. Sketch and identify the regions representing the consumer and producer surpluses.

- c. Calculate the consumer surplus.
- 7. Use Trapezoid rule with n = 4 to estimate $\int_{0}^{4} \frac{10}{\sqrt{x^3 + 8}} dx$. Your answer should be correct to 4 decimal places.
- 8. Find the function y that satisfies the differential equation $-y' + 6e^y = 4e^{2x+y}$ and passes through the point (0,0).
- 9. A company's production N is increasing at a rate proportional to the product of the number N of units and the square of the time t in years. Initially, 8 units are produced. In one year, 16 units are expected. After two years, what will be the production?
- 10. Evaluate the limits using l'Hopital's Rule.

a.
$$\lim_{x \to 0} \frac{2x - \sin(2x)}{x - \sin(x)}$$

b.
$$\lim_{x \to \pi} \frac{3\sin(x) + 2\tan(3x)}{4\tan(2x) - x + \pi}$$

11. Evaluate the improper integrals.

a.
$$\int_{1}^{2} \frac{2x^{2} + 1}{\left(2x^{3} + 3x - 5\right)^{3}} dx$$

b.
$$\int_{-\infty}^{0} \frac{e^{3x}}{(3 - e^{3x})^2} dx$$

- 12. Find a formula for the n^{th} term of the sequence $\left\{-\frac{5}{7}, \frac{10}{13}, -\frac{20}{19}, \frac{40}{25}, -\frac{80}{31}\right\}$
- 13. Determine whether the following sequences converge or diverge. If a sequence converges, find its limit. If sequence diverges, explain why.

a.
$$a_n = \frac{(-1)^n (1-n)}{n^2 + 3}$$

b.
$$a_n = \frac{3^n + 7}{n+1}$$

14. Given
$$a_n = \frac{7n^2(2n+1)!}{(2n+3)!}$$

a. Does the sequence converge? Justify your answer

b. Does
$$\sum_{n=1}^{\infty} a_n$$
 converge?

15. Determine whether the following series converge or diverge. Identify which test you are using. In case of a convergent geometric or telescoping series, find the sum of the series.

a.
$$\sum_{n=0}^{\infty} \frac{2^{n+1}+3^n}{7^n}$$

b.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

c.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{5^{n+2}}$$

$$d. \sum_{n=2}^{\infty} \frac{n^{2.5}}{\sqrt{n}}$$

16. John wants to give his daughter \$25,000 in 8 years to start her own business. How much should he invest monthly today at an annual interest rate of 2% compounded monthly to have the \$25000 in 8 years?

Answers

- 1. (a) $-\frac{4}{\sqrt{t}} \frac{3^t}{\ln 3} + 4t \frac{1}{t} 4\ln|t| + c$ (b) 13 (c) 0.2175 (d) $\frac{x^3}{3} \frac{3x^2}{2} 3x + 2\ln|x 1| + c$
- (e) $\frac{7}{8}$ (f) $x^3 + 2\cos(2x) + c$ (g) $\ln|x| + \frac{2}{x} + 4\ln|x 1| + c$ (h) $-\frac{1}{4}e^{-2x}(2x^2 + 2x 3) + c$
- 2. $f(x) = 16x^{\frac{5}{2}} 8x^3 + 7x 6$ 3.(a)17 (b) $\frac{3}{2}$ (c) $-\left(\frac{\pi}{4} + 3\right)$

- 4. $C(x) = 6\sqrt{x} + x + 15$ (b)\$127 5.(a) $\pm 1, -7$ b) $\int_{-7}^{-1} (x^3 + 7x^2 x 7) dx + \int_{-1}^{1} (x + 7 x^3 7x^2) dx$ 6. (a) (2,18) b)

- 7. 9.8807 8. $y = -\ln(2e^{2x} 6x 1)$

- 9. N = 2048 10. (a)8 (b) $\frac{3}{7}$ 11.(a) diverges (b) $\frac{1}{18}$

- 12. $(-1)^n 5 \frac{2^{n-1}}{6n+1}$ 13.(a)converges to 0
- (b)Diverges

- 14.(a) converges to $\frac{7}{4}$ (b) no, it diverges by divergence test
- 15.(a) convergent geometric series, sum= $\frac{91}{20}$ (b) convergent Telescoping series, sum= $\frac{3}{4}$

- (c) converges by Ratio test
- d) divergent p series or the Nth term test.

16. \$239.96