Question 1: (27 pts) Evaluate the following integrals.
a) $\int \frac{2 t^{2}-4 \sqrt{t}+t^{3 / 2} \csc (2 t)-5}{\sqrt{t^{3}}} d t$
b) $\int \frac{2 \ln (x)}{x^{3}} d x$
c) $\int \frac{7 \sec ^{2}(4 x)}{\sqrt{8-4 \tan (4 x)}} d x$
d) $\int_{0}^{1}\left(x^{2}-2\right) e^{2 x} d x$
e) $\int \frac{2 \sec (x)-\cos (x)+2}{\cot (x)} d x \quad$ f) $\int_{1}^{2} 7+|5-3 x| d x$
g) $\int \frac{3 x^{4}-4 x^{3}-11 x^{2}+17 x-12}{x^{3}-x^{2}-6 x} d x$

Question 2: (4 pts) Find $f(x)$, given that $f^{\prime \prime}(x)=20 x^{3}+12 x^{2}+4$, and that the slope of the tangent line to the graph of f at the point $(1,5)$ is 21 .

Question 3: (4 pts) Use Riemann Sums with right end-points and $n=4$ rectangles to approximate $\int_{2}^{4} e^{\cos (2 x)} d x$. Your answer should be accurate to 4 decimal places.

Remember: Your calculator should be in radians.

Question 4: (3 pts) Given that $\int_{0}^{2} 2 f(x) d x=6$ and $\int_{7}^{2} f(x) d x=4$, find $\int_{0}^{7} 6 f(x)+2 x d x$.

Question 5: (4 pts) Find the area of the region enclosed by $y=-4 x, y=5-x^{2}$ and $x=-2$.

Question 6: (4 pts) Solve the differential equation $10 y^{\prime}+e^{x} y^{3}=0$, with $y(0)=-1$.

Question 7: ($\mathbf{5} \boldsymbol{p t s}$) The weekly demanded quantity x (in hundreds of units) of portable barbecues is related to the price per barbecue p by the equation $p=-0.1 x^{2}-x+40$. The supply function for the same product is $p=0.1 x^{2}+2 x+20$.
a) Find the equilibrium point.
b) Sketch and identify the regions representing the consumer and producer surpluses.
c) Evaluate the producer surplus.

Question 8: (6 pts) After vacationing in a dubious resort, a group of unicorns have brought back fleas to their herd (which has a total of 5000 unicorns). Initially, 100 unicorns have fleas, but after 10 days the infestation has spread to 511 unicorns. The number of infested unicorns N is increasing at a rate that is proportional to the square root of the number of unicorns that have not yet been infested.
a) Write the differential equation (with initial conditions) for the problem.
b) Find the function $N(t)$ for the number of infested unicorns after t days.
c) How long will it take for half of the herd to be infested?

Question 9: (6 pts) Evaluate the following limits using l'Hôpital's rule where appropriate.
a) $\lim _{x \rightarrow 1} \frac{x e^{x-1}-3 x^{2}+4 x-2}{x^{3}+2 x^{2}-7 x+4}$
b) $\lim _{x \rightarrow+\infty} \frac{\ln (4 x+3)}{e^{2 x^{2}}+5}$

Question 10: (10 pts) Determine whether the following improper integrals converge or diverge. If the integral converges, find its value.
a) $\int_{2}^{4} \frac{4 x-2}{x^{2}-x-12} d x$
b) $\int_{e^{2}}^{+\infty} \frac{4}{x(\ln (x)+2)^{2}} d x$

Question 11: (2 pts) Determine whether the sequence $\left\{\frac{n^{2}(2 n)!}{(2 n+2)!}\right\}$ converges or diverges. If the sequence converges, find its limit. If it diverges, explain why.

Question 12: ($\mathcal{Z} \boldsymbol{p t s}$) True or False: If the sequence $\left\{a_{n}\right\}$ converges, then the sequence $\left\{(-1)^{n} a_{n}\right\}$ converges as well. Explain your answer.

Question 13: (5 pts) Consider the sequence $\left\{\frac{1}{5}, \frac{2}{8}, \frac{4}{11}, \frac{8}{14}, \cdots\right\}$
a) Give the $\mathrm{n}^{\text {th }}$ term a_{n} of the sequence.
b) Does the sequence converge? If so, find its limit.
c) Does the series $\sum_{n=1}^{+\infty} a_{n}$ converge or diverge? State which test you are using.

Question 14: (4 pts) A collector wants to buy an autographed Wayne Gretzky rookie card (in mint condition!) valued at $\$ 22000$. If the collector is making weekly deposits in a savings account that earns 2.6% annual interest (compounded weekly), what should the amount of the deposits be in order to have enough money to buy the card after 2 years?

Question 15: (14 pts) Determine whether the following series converge or diverge. Identify which test you are using. In the case of a geometric or telescoping series, find the sum of the series.
а) $\sum_{n=3}^{+\infty} \frac{2 n+3}{n^{3}}$
b) $\sum_{n=1}^{+\infty} \frac{2}{n^{2}+4 n+3}$
c) $\sum_{n=0}^{+\infty} \frac{5^{n}}{4^{2 n+1}(2 n+1)}$
d) $\sum_{n=1}^{+\infty} \frac{3^{-n}}{4^{n-2}}$

ANSWERS:

1.) a) $\frac{4}{3} t^{3 / 2}-4 \ln |t|+\frac{1}{2}$
c) $\frac{-7}{8} \sqrt{8-4 \tan (4 x)}+C$
d) $\frac{3}{4}\left(1-e^{2}\right)$
e) $2 \sec (x)+\cos (x)+2 \ln |\sec (x)|+C$
f) $\frac{47}{6}$
g) $\frac{3}{2} x^{2}-x+2 \ln |x|-\ln |x+2|+5 \ln |x-3|+C$
2.) $f(x)=x^{5}+x^{4}+2 x^{2}+8 x-7$
3.) 3.4650
4.) 43
5.) $\frac{10}{3}$
6.) $y=-\sqrt{\frac{5}{e^{x}+4}}$
7.) a) $(5,32.5)$

8.) a) $\frac{d N}{d t}=k \sqrt{5000-N}$ $N=100$ when $t=0, N=511$ when $t=10$
b) $N=5000-(70-0.3 t)^{2}$
c) Approx. 66.7 days
9.) a) $\frac{-3}{10} \quad$ b) 0
10.) a) Diverges b) Converges to 1
11.) Converges to $\frac{1}{4}$
12.) False. It converges only if a_{n} converges to 0 . If a_{n} converges to a different value, then it will diverge.
c) $\$ 33.33$
13.) $\begin{array}{ll}\text { a) } \frac{2^{n-1}}{3 n+2} & \text { b) } \lim _{x \rightarrow+\infty} a_{n}=+\infty \text { therefore the sequence diverges. }\end{array}$
c) Since $\lim _{x \rightarrow+\infty} a_{n}=+\infty$, the series diverges (by Divergence Test)
14.) $\$ 206.04$ per week
15.) a) Converges (sum of $2 p$-series)
b) Converges to $\frac{5}{6}$ (Telescoping)
c) Converges (Ratio Test)
d) Converges to $\frac{16}{11}$ (Geometric series)

