1. (28 points) Evaluate the following integrals.
(a) $\int \frac{\sqrt{x}-6 x^{5}+x^{4} \cot \left(x^{2}\right)}{x^{3}} d x$
(e) $\int \frac{x^{2}+9 x+8}{x(x+2)^{2}} d x$
(b) $\int \frac{4 x^{2}}{\sqrt{x^{3}-8}} d x$
(f) $\int \cos (\cos x) \sin (x) d x$
(c) $\int_{4}^{8}|7-x| d x$
(g) $\int \frac{\csc (x) \cot (x)-\sin (x)}{\sin (x) \cot (x)} d x$
(d) $\int x^{2} \ln (18 x) d x$
2. (2 points) Give the value(s) of a and b that satisfy the equation $\int_{5}^{a} f(x) d x-\int_{b}^{2} f(x) d x=\int_{2}^{7} f(x) d x$
3. (6 points) Given the graph of function f below, find the following

(a) $\int_{-6}^{0} f(x) d x$
(b) $\int_{6}^{0} f(x) d x$
(c) $\int_{-6}^{6} 2 f(x) d x$
4. (8 points) Given $\int_{3}^{5} \frac{1}{x \ln x} d x$
(a) Use the trapezoidal rule with $n=2$ to approximate the definite integral. Your answer should be accurate to 4 decimal places.
(b) Use substitution to evaluate the definite integral. Your answer should be accurate to 4 decimal places.
5. (4 points) Find the area of the region enclosed by $f(x)=x^{2}-1$ and $g(x)=-x^{2}-2 x+3$.
6. (4 points) The weekly demand function for the SoGreen coffee mug, a plant-based reusable mug, is $D(x)=\frac{144}{\sqrt{x+10}}$, and the supply function is $S(x)=\sqrt{x+10}$.
(a) Find the equilibrium point.
(b) Evaluate the consumers' surplus.
7. (4 points) Evaluate the following limits if possible.
(a) $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}$
(b) $\lim _{x \rightarrow 1^{+}} \frac{\ln (x)-x+1}{x \ln (x)-1}$
8. (4 points) Solve the differential equation for y given $\frac{d y}{d x}=\frac{x^{2} y-4 y}{x+2}$, with initial condition $y(0)=2$.
9. (5 points) The rate of decay at time t in hours of a radioactive substance N is proportional to the amount of substance present. If 75% of the initial amount of radioactive substance has decomposed after 10 hours, find the remaining amount of radioactive substance after 15 hours if initially the amount of radioactive substance is 300 g .
10. (10 points) Determine whether the following improper integrals converge or diverge. If the integral converges, find its value.
(a) $\int_{0}^{\infty} \frac{e^{5 x}}{e^{5 x}+1} d x$
(b) $\int_{-\frac{1}{3}}^{0} \frac{3 x+2}{\sqrt{3 x^{2}+4 x+1}} d x$
11. (2 points) Give the $n^{\text {th }}$ term of the sequence $\left\{-\frac{1}{1}, \frac{3}{3},-\frac{9}{5}, \frac{27}{7},-\frac{81}{9}, \ldots\right\}$
12. (3 points) Consider the following sequence $a_{n}=\frac{3 n(n-1) \text { ! }}{n!}$
(a) Does the sequence converge? If so, find its limit.
(b) Does the series $\sum_{n=1}^{\infty} a_{n}$ converge of diverge? State which test you are using.
13. (2 points) Explain whether the following statement is true of false:

If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
14. (14 points) Determine the convergence or divergence of the following series. Mention the test you used. In the case of a convergent geometric or telescoping series, find the sum.
(a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
(c) $\sum_{n=2}^{\infty} \frac{2^{n+1}}{3^{n-1}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}+1}{n^{4}}$
(d) $\sum_{n=1}^{\infty} \frac{e^{n}}{3 n+1}$
15. (4 points) A deposit of $\$ 150$ is made at the beginning of each month for 5 years in an account that pays an annual rate of 2% interest compounded monthly. Find the total balance in this account at the end of 5 years.

ANSWERS

1. (a) $-\frac{2}{3 \sqrt{x^{3}}}-2 x^{3}+\frac{\ln \left|\sin \left(x^{2}\right)\right|}{2}+C$
(b) $\frac{8}{3} \sqrt{x^{3}-8}+C$
(c) 5
(d) $\frac{x^{3}}{3} \ln (18 x)-\frac{x^{3}}{9}+C$
(e) $-\frac{3}{x+2}+2 \ln |x|-\ln |x+2|+C$
(f) $-\sin (\cos x)+C$
(g) $\ln |\cos x|-\cot x+C$
2. $a=7$ and $b=5$
3. $(\mathrm{a})=1$
(b) $=-5-\pi / 2$
(c) $=12+\pi$
4. $(\mathrm{a}) \approx 0.3941$
$(\mathrm{b}) \approx 0.3818$
5. 9
6. (a) $(134,12)$
$(\mathrm{b}) \approx \$ 937.26$
7. (a) $1 / 6$
(b) 0
8. $y=2 e^{\frac{x^{2}}{2}-2 x}$
9. 37.5 g
10. (a) diverges
(b) converges, the value is 1
11. $(-1)^{n} \frac{3^{n-1}}{2 n-1}$
12. (a) converges to 3
(b) div. by div. test
13. false, if the series converges, the limit of the general term must be 0 .
14. (a) telescoping, conv. to $1 / 2$
(b) conv. p series
(c) geometric series, conv. to 8
(d) div. by Ratio test
15. $\$ 9472.87$
