(3) 1. Let $f^{\prime \prime}(x)=20 x^{3}-18 x+4$. Find $f(x)$, given $f^{\prime}(1)=3$ and $f(1)=4$.
2. Evaluate the following integrals.
(a) $\int\left(\sec (x)+\frac{1}{\sqrt[4]{x^{5}}}+\frac{5}{\sec (3 x)}-\pi^{5}\right) d x$
(b) $\int \frac{(\tan x)\left(x^{2}-x \cot x\right)}{x^{2}} d x$
(c) $\int\left(e^{7 x}-2 x^{6}\right) \sqrt[3]{e^{7 x}-2 x^{7}} d x$
(d) $\int x^{2} e^{3 x} d x$
(e) $\int_{2}^{4}|x-3| d x$
(f) $\int \frac{\ln \sqrt{5 x+1}}{5 x+1} d x$
(g) $\int \frac{x^{3}-4 x^{2}+3 x+1}{x^{2}-3 x} d x$
(h) $\int_{0}^{\pi / 2}(2 x+1) \sin (x) d x$
(4) 3. Find the area of the region enclosed by $f(x)=x^{2}-6 x+5$ and $g(x)=-x^{2}+4 x-3$.
4. Given that $\int_{1}^{6} f(x) d x=7, \int_{1}^{12} f(x) d x=3$ and $\int_{3}^{12} f(x) d x=-4$, find $\int_{3}^{6} f(x) d x$.
5. Given the supply function $p(x)=x+3$ and the demand function $p(x)=\sqrt{144-16 x}$
(a) Find the equilibrium point.
(b) Determine the producers' surplus.
(5) 6. (a) The function $f(x)=\sqrt{9-x^{2}}$ represents the semicircle shown below. Use it to evaluate $\int_{0}^{3} \sqrt{9-x^{2}} d x$.

(b) Find an approximation to the integral $\int_{0}^{3} \sqrt{9-x^{2}} d x$ using a Riemann sum with right endpoints and $n=3$. Round your answer to 4 decimal places.
(c) When using a Riemann sum to approximate the area under a curve as in the above question, how can the accuracy of the approximation be improved?
(4) 7. Evaluate the following limits, if possible.
(a) $\lim _{x \rightarrow \pi} \frac{\sec (x)+1}{x-\pi}$
(b) $\lim _{x \rightarrow 0^{+}} \frac{e^{1 / x}}{1 / x}$
(4) 8. Solve the differential equation for y, given, $\frac{d y}{d x}=\frac{x}{x^{2} y+y}$ with initial condition $y(0)=-4$.
(4) 9. The rate of change in price P of a carbon tax charged to travelers flying overseas is proportional to the square root of its price. If the initial price is $\$ 81$ and the price after two years is $\$ 196$, what will the price be after four years?
(8) 10. Determine whether the following improper integrals converge or diverge. If an integral converges, find its value.
(a) $\int_{1}^{5} \frac{2 x}{\sqrt{x^{2}-1}} d x$
(b) $\int_{2}^{\infty} \frac{1}{x \ln x} d x$
(2) 11. Determine if the sequence $a_{n}=\left(\frac{-2}{3}\right)^{2 n-1}$ is convergent or divergent. If it is convergent, find its limit.
(4) 12. Determine whether the series $\sum_{n=0}^{\infty} \frac{4+3^{n}}{5^{n}}$ converges or diverges. If it converges, find its sum.
(2) 13. If $\lim _{n \rightarrow \infty} a_{n}=0$, what can you conclude, if anything, about the series $\sum_{n=1}^{\infty} a_{n}$?
(14) 14. Determine whether the following series converge or diverge. Justify your answers. In the case of a convergent geometric or telescoping series, find its sum.
(a) $\sum_{n=3}^{\infty} \frac{2}{n(n-2)}$
(b) $\sum_{n=2}^{\infty} \frac{n^{e-1}-\sqrt[3]{n^{2}}}{n^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{n \cdot 2^{n}}{(n+1)!}$
(d) $\sum_{n=1}^{\infty} \frac{(-5)^{n+1}}{4^{n}}$
(5) 15. A deposit of $\$ 300$ is made every 3 months for a period of 15 years in an account that pays an annual interest rate of 6% compounded quarterly. Find the total balance in this account at the end of 15 years.

Answers

1. $f(x)=x^{5}-3 x^{3}+2 x^{2}+3 x+1$
2. (a) $\ln |\sec x+\tan x|-\frac{4}{\sqrt[4]{x}}+\frac{5}{3} \sin (3 x)-\pi^{5} x+C$
(b) $\ln |\sec x|-\ln |x|+C$
(c) $\frac{3}{28}\left(e^{7 x}-2 x^{7}\right)^{4 / 3}+C$
(d) $\frac{1}{3} x^{2} e^{3 x}-\frac{2}{9} x e^{3 x}+\frac{2}{27} e^{3 x}+C$
(e) 1
(f) $\frac{1}{5}(\ln \sqrt{5 x+1})^{2}+C$
(g) $\frac{1}{2} x^{2}-x-\frac{1}{3} \ln |x|+\frac{1}{3} \ln |x-3|+C$
(h) 3
3. 9
4. 0
5. (a) $(5,8)$
(b) $\$ 12.50$
6. (a) $\frac{9}{4} \pi$
(b) 5.0645
(c) The accuracy may be improved by increasing the number of retangles n.
7. (a) 0, Convergent
(b) ∞, Divergent
8. $-\sqrt{\ln \left|x^{2}+1\right|+16}$
9. $\$ 361.00$
10. (a) $2 \sqrt{24}$
(b) ∞, Divergent
11. 0, Convergent
12. $\frac{15}{2}$, Convergent
13. You can't conclude anything about the convergence or divergence of the series.
14. (a) $\frac{3}{2}$, Convergent (Telescoping series)
(b) Convergent (p-series)
(c) Convergent (by Ratio test)
(d) Divergent (G-series $r=-\frac{5}{4}$)
15. $\$ 29297.36$
