Evaluate the following integrals
a. $\int \frac{2}{x \ln (x)} d x$
b. $\int \frac{(x-1)^{2}+x^{3 / 2} e^{x}}{\sqrt{x^{3}}} d x$
c. $\int_{-1}^{2}(|1-x|+x) d x$
d. $\int \csc (4 x+1) \cot (4 x+1) d x$
e. $\int_{1}^{2} \frac{12}{t^{3}-6 t^{2}} d t$
f. $\int 8 x \sec ^{2}(3 x) d x$
g. $\int \frac{x^{2}+5 x+4}{x+2} d x$
2. Suppose $\int_{-2}^{3}(1-2 f(x)) d x=-1$ and $\int_{-5}^{3} f(x) d x=10$, calculate $\int_{-5}^{-2} f(x) d x$
3. Find values of a and b which satisfy the equation $\int_{1}^{a} f(x) d x-\int_{b}^{4} f(x) d x=\int_{4}^{10} f(x) d x$
4. Consider the functions $f(x)=x^{2}+1$ and $g(x)=x^{3}+1$.
a. Find the points of intersection of the graphs of f and g.
b. Calculate the area of the region completely enclosed by the graphs of f and g.
5. Given the demand function $p(x)=\frac{12}{x+3}$ and the supply function $p(x)=x+2$
a. Find the equilibrium point.
b. Sketch and identify the regions representing the consumer and producer surpluses.
c. Calculate the consumer surplus.
6. a. Given that $\int_{1}^{2} 2 x e^{x^{2}}$, use the trapezoid rule with $n=2$ to obtain an approximation for the area under the graph between $1 \leq x \leq 2$. Your answer should be accurate to 4 decimal places.
b. Use the substitution rule to obtain an exact value for the area accurate to 4 decimal places.
7. Find the function y that satisfies the differential equation $y^{\prime}=6 y^{2} x$ with $y(1)=\frac{1}{9}$.
8. A Tech company has upgraded its computer infrastructure by purchasing several new computers for a total value V of $\$ 8000$. The rate of depreciation value in dollars at time t in years is proportional to the square root of its value V . The computers will be worth $\$ 5000$ three years later. What is the value of the computers after 5 years?
9. Evaluate the limits.
a. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$
b. $\lim _{x \rightarrow-\infty} \frac{e^{-3 x}}{5+e^{-2 x}}$
10. Evaluate the improper integrals.
a. $\int_{1}^{\infty} \frac{e^{-1 / x}}{x^{2}} d x$
b. $\int_{1}^{5} \frac{7}{(x-1)} d x$
11. Find a formula for the $n^{\text {th }}$ term of the sequence $\left\{\frac{2}{5}, \frac{4}{15}, \frac{8}{45}, \frac{16}{135}, \ldots\right\}$
12. Determine whether the following sequence converges or diverges. If the sequence converges, find its limit. If sequence diverges, explain why.

$$
a_{n}=\frac{(-1)^{n}(1+7 n)}{(1-2 n)}
$$

13. Given $a_{n}=\frac{5(2 n)!}{3 n(2 n-1)!}$
a. Does the sequence converge? Justify your answer
b. Does $\sum_{n=1}^{\infty} a_{n}$ converge?
14. Use the word Must, Might or Cannot which best completes the statement below:

If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then the sequence ----------------------------------converge to zero.
15. Determine whether the following series converge or diverge. Identify which test you are using. If the convergent series is geometric or telescoping, find its sum.
a.

b.

c.

d. $\sum_{n=1}^{\infty} \frac{n^{2}(n+1)^{2}}{10 n^{4}}$
16. Karen is planning a trip to Canada to visit her friend in two years time. She makes an itinerary for her holiday and expects that the trip will cost $\$ 4000$ USD. How much must she save every month if her savings account earns an interest rate of 3% per annum compounded monthly?

Answers:

1) a) $2 \ln |\ln (x)|+c$;
b) $\frac{2}{3} x^{3 / 2}-4 \sqrt{x}-2 x^{-1 / 2}+e^{x}+c$;
c) 4 ;
d) $\frac{-1}{4} \csc (4 x+1)+c$
е) $\ln \left(\frac{2}{5}\right)^{1 / 3}-1=-1.305$;
f) $\frac{8 x}{3} \tan (3 x)-\frac{8}{9} \ln |\sec (3 x)|+c ;$ g) $\frac{x^{2}}{2}+3 x-2 \ln |x+2|+c$
2) 7 ;
3) $a=10, b=1$;
4) a) $x=0, x=1$;
b) $\frac{1}{12}$;
5) a) $(1,3)$;
b)

c) $\$ 0.452$; 6) a) 70.1889 ;
b) 51.8799 ;
6) $y=\frac{-1}{3 x^{2}-12}$;
7) $\$ 3389.88$
8) a) $\frac{1}{2}$;
b) ∞;
9) a) $\frac{e-1}{e}$;
b) Div. ;
10) $\frac{2^{n}}{53^{n-1}}$
11) Div.
12) a) conv.to $\frac{10}{3}$;
b) Div. by Divergence T.;
13) Must;
14) a) Conv. By Ratio T.
b) Conv. By Geometric ST. and sum $=\frac{15}{2}$; c) Conv. By Telescoping ST. and sum= $\frac{11}{18} ; \quad$ d) Div. by Divergence T.; 16) $\$ 161.5$
