Final Examination
Calculus II
201-203-RE
16 December 2020

1. $[16=4+4+4+4]$ Evaluate each integral.
(a) $\int_{0}^{1}(12 x-10) e^{3 x^{2}-5 x} d x$
(b) $\int x \sec ^{2} x d x$
(c) $\int \frac{1}{1+\sqrt{x}} d x$
(d) $\int \frac{2 x^{4}-3 x+12}{x^{3}-x^{2}} d x$
2. [2] The graph of f is given below. Find $\int_{0}^{5} f(x) d x$.

3. [4] Solve the differential equation $e^{-x^{2}} y^{\prime}=\frac{x}{y}$ with initial condition $y(0)=-3$.
4. [5] Centax is a special wax centaurs use on their manes as a sort of armor. The Centaur army has been called to war, and as such, the price of Centax is increasing at a rate proportional to the product of price and time. The price of Centax, $P(t)$, starts off at $\$ 40$ per pound of wax, but it is expected to double and reach a price of $\$ 80$ in just 2 days.
(a) Clearly write the differential equation representing this problem as well as the initial conditions.
(b) Find the function $P(t)$ for the price of Centax after t days (in its most simplified form).
(c) How high will the price be after 4 days?
5. [2] Evaluate $\lim _{x \rightarrow 0} \frac{\ln |\cos (x)|}{\sin x}$ or explain why it does not exist.
6. [2] Find the general term of the sequence $\left\{\frac{4}{5}, \frac{9}{8}, \frac{16}{11}, \frac{25}{14}, \frac{36}{17}, \ldots\right\}$.
7. [1] If $a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=8$, does the sequence $b_{n}=(-1)^{n} a_{n}$ converge or diverge? Briefly explain your answer.
8. $[\mathbf{3}=\mathbf{2}+\mathbf{1}]$ For each sequence, find the limit or explain why it diverges.
(a) $a_{n}=\frac{3 n(n+1)!}{(n+2)!}$
(b) $a_{n}=(-1)^{n}+6$
9. $[9=5+4]$ Evaluate each improper integral.
(a) $\int_{e}^{\infty} \frac{\ln x}{x^{2}} d x$
(b) $\int_{2}^{4} \frac{6 x}{x^{2}-4} d x$
10. $[\mathbf{1 3}=\mathbf{4}+\mathbf{3}+\mathbf{3}+\mathbf{3}]$ Determine the convergence or divergence of the following series. Mention any test you use. In the case of a convergent geometric or telescoping series, find the sum.
(a) $\sum_{n=0}^{\infty} \frac{2}{n^{2}+8 n+15}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{5^{n}}{(2 n)!}$
(c) $\sum_{n=1}^{\infty} \frac{3+\sqrt{n}}{n^{2}}$
(d) $\sum_{n=0}^{\infty} \frac{5^{n-1}}{2^{3 n+1}}$
11. [4] Johnny Ontario wants to save money to buy a self-driving electric car. He predicts that 10 years from now, the car will cost $\$ 20,000$. To reach his goal, how much should he invest monthly if the annual interest rate is 3% compounded monthly?
12. [1] Let $\sum_{n=1}^{\infty} a_{n}$ be a series and let S_{n} be its sequence of partial sums where $\lim _{n \rightarrow \infty} S_{n}=7$. Find $\lim _{n \rightarrow \infty} a_{n}$.
(TOTAL $=62$ MARKS)

ANSWERS

1. (a) $\frac{2}{e^{2}}-2$
(b) $x \tan x+\ln |\cos x|+C$
(c) $2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$
(d) $-9 \ln |x|+x^{2}+2 x+\frac{12}{x}+11 \ln |x-1|+C$
2. $\frac{3}{2}$
3. $y=-\sqrt{e^{\left(x^{2}\right)}+8}$
4. (a) $\frac{d P}{d t}=k P t, \quad P(0)=40, P(2)=80$.
(b) $P(t)=40 \cdot 2^{t^{2} / 4}$
(c) $\$ 640$
5. 0
6. $a_{n}=\frac{(n+1)^{2}}{3 n+2}$
7. $\lim a_{n} \neq 0$ so $\lim b_{n}$ does not exist (oscillating).
8. (a) 3
(b) Does not exist (oscillating).
9. (a) $\frac{2}{e}$
(b) Divergent $(+\infty)$
10. (a) Converges to $\frac{7}{12}$ (telescoping).
(b) Convergent (ratio test).
(c) Convergent (p-series).
(d) Converges to $\frac{4}{15}$ (geometric).
11. $\$ 142.76$
12. 0
