1. [18] Evaluate each integral.
(a) $\int_{0}^{4}|2 x-5| d x$
(b) $\int_{0}^{\pi} x^{2} \sin x d x$
(c) $\int \frac{6 x^{4}+8 x^{3}-8 x^{2}-x+4}{x^{2}+2 x} d x$
(d) $\int \frac{\sec x \tan x}{(1+\sec x)^{2 / 3}} d x$
2. [3] The graph of f is given below. Find
(a) $\int_{0}^{6} f(x) d x$.
(b) $\int_{3}^{3} f(x) d x$.

3. [5] The supply function for a deluxe JAC hoodie is $p=2 x^{2}+4 x$ while the demand function is $p=-2 x+108$.
(a) Find the equilibrium point.
(b) Sketch (roughly) and label the regions that represent the consumers' surplus and the producers' surplus.
(c) Determine the producers' surplus if the market price is set at the equilibrium price.
4. [4] Solve the differential equation $x^{2} \frac{d y}{d x}=\frac{x+3}{y}$ with condition $y(1)=-4$.
5. [5] Evaluate the limit or explain why it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{x}{\ln x}$
(b) $\lim _{x \rightarrow 0} \frac{x e^{x}-\sin x}{1-\cos x}$
6. [2] Find an expression a_{n} for the general term of the sequence

$$
\left\{\frac{4}{1}, \frac{8}{4}, \frac{16}{7}, \frac{32}{10}, \frac{64}{13}, \ldots\right\}
$$

7. [3] Assume that $\lim _{n \rightarrow \infty} a_{n}=4$. Mark each of the following as convergent or divergent. Justify your answers. If convergent, find the limit/sum.
(a) The sequence $\frac{1}{a_{n}}$.
(b) The sequence $(-1)^{n} a_{n}$.
(c) The series $\sum_{n=1}^{\infty} a_{n}$.
8. [3] For each sequence, find the limit or explain why it diverges.
(a) $a_{n}=\frac{n^{2}}{n^{2}+1}$
(b) $a_{n}=\frac{(-1)^{n}}{n^{2}+1}$
9. [10] Evaluate each improper integral.
(a) $\int_{1}^{\infty} x^{2} e^{1-x^{3}} d x$
(b) $\int_{0}^{1} \frac{\ln x}{x} d x$
10. [9] Determine the convergence or divergence of the following series. Mention any test you use. In the case of a convergent geometric or telescoping series, find the sum.
(a) $\sum_{n=1}^{\infty}\left(\frac{3}{n}-\frac{3}{n+2}\right)$
(b) $\sum_{n=1}^{\infty} \frac{n!}{(3 n)!}$
(c) $\sum_{\mathbf{n}=\mathbf{0}}^{\infty} \frac{5^{n+1}}{2^{3 n}}$
11. [3] The JAC Calculus II teachers have decided to save money for a post-pandemic trip to Greece. $\$ 20$ is put into a savings account once per week, and the savings account pays 2% annual interest, compounded weekly. How much is in the account after five years?
(b) Divergent
12. (a) Converges to $\frac{9}{2}$ (telescoping)
(b) Convergent (ratio test)
(c) Converges to $\frac{40}{3}$ (geometric)
13. $\$ 5469.89$

ANSWERS

1. (a) $\frac{17}{2}$
(b) $\pi^{2}-4$
(c) $-3 \ln |x+2|+2 \ln |x|+2 x^{3}-2 x^{2}+C$
(d) $3 \sqrt[3]{\sec x+1}+C$
2. (a) 1
(b) 0
3. (a) $(6,96)$
(b)
(c) $\$ 360$
4. $y=-\sqrt{22+2 \ln |x|-\frac{6}{x}}$
5. (a) ∞
(b) 2
6. $\frac{2^{n+1}}{3 n-2}$
7. (a) $\frac{1}{4}$ (used a limit law)
(b) Divergent (oscillating)
(c) Divergent (Test for Divergence)
8. (a) 1
(b) 0
9. (a) $\frac{1}{3}$
