Question 1: (9 pts) Evaluate the following limits:
a) $\lim _{x \rightarrow 0} \frac{e^{2 x}+x^{2}-2 x-1}{\cos (3 x)-1}$
b) $\lim _{x \rightarrow+\infty}(3 x-1)^{\frac{2}{\ln (x)+1}}$
c) $\lim _{x \rightarrow \pi} \sin (2 x) \csc (5 x)$

Question 2: (4 pts) Use Newton's method to find the solution of $\sin (x)=x^{2}-2$ that is between $x=1$ and $x=2$. Give an answer that is accurate to 5 decimals. (Show all your work!)

Question 3: (9 pts) Find the derivative of the following functions. Do not simplify your answer.
a) $y=e^{\arccos (3 x)}$
b) $y=(\arctan (\sqrt{x}))^{4}$
c) $y=\ln \left(\arcsin \left(x^{3}\right)\right)$

Question 4: (4 pts) Use the Trapezoidal Rule to approximate $\int_{1}^{2} \sqrt{x^{3}-1} d x$, using $n=5$.
Give an answer that is accurate to 4 decimals.

Question 5: (4 pts) For raising a load, the efficiency of a screw with square threads is given by:

$$
E=\frac{100 T(1-f T)}{T+f}
$$

where f is the coefficient of friction, and T is the tangent of the pitch angle of the screw. If $f=0.25$, what acute angle will give the maximum efficiency? (Hint: find $\frac{d E}{d T}$)

Question 6: (3 pts) A conveyor belt is dumping gravel at a rate of $40.0 \mathrm{ft}^{3} / \mathrm{min}$. The gravel is accumulating in a pile that has a conical shape, and whose height and diameter are always equal. How fast is the height of the pile increasing when it's 5.00 ft ? (Remember volume of a cone: $V=\frac{\pi}{3} r^{2} h$)

Question 7: (13 pts)

Given $f(x)=\frac{x-1}{x^{2}-2 x} \quad, \quad f^{\prime}(x)=\frac{-\left(x^{2}-2 x+2\right)}{\left(x^{2}-2 x\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2(x-1)\left(x^{2}-2 x+4\right)}{\left(x^{2}-2 x\right)^{3}}$, find (if any):
a) The domain of f.
b) The x and y intercept(s).
c) The vertical and horizontal asymptotes.
d) The intervals on which f is increasing or decreasing.
e) The local minima and maxima.
f) The intervals of upward and downward concavity.
g) The points of inflection.
h) Sketch the graph of f.

Question 8: (3 pts) Find the area of the region enclosed by the graph of $f(x)=x^{3}-x$ and the x-axis:

Question 9: (28 pts) Evaluate the following integrals:
a) $\int \frac{2 x^{3}-2 x^{2}-6 x+13}{x^{2}-x-2} d x$
b) $\int \tan ^{3}(x) \cos ^{2}(x) d x$
c) $\int \arccos (x) d x$
d) $\int \sqrt{x^{2}+6 x+10} d x$
e) $\int \frac{x^{2}+1}{\sqrt[5]{x^{3}+3 x+7}} d x$
f) $\int \tan ^{8}(3 x) \sec ^{4}(3 x) d x$
g) $\int\left(3 x^{2}+2\right) e^{2 x} d x$

Question 10: ($\mathbf{6} \boldsymbol{p} \boldsymbol{t s}$) Let R be the region enclosed by $y=1+2 x^{3}, y=0, x=0$ and $x=1$:

[2] a) Set up, but do not evaluate, the integral to find the volume of the solid obtained by revolving R about the line $y=-2$.
[4] b) Find the volume of the solid obtained by revolving R about the y-axis.

Question 11: (3 pts) Determine if $y=x^{3} e^{2 x}$ is a solution of the differential equation $y^{\prime \prime}-4 y^{\prime}+6 y=6 x e^{2 x}$.

Question 12: (4 pts) Solve the following separable differential equation: $2 \sin (x) \frac{d y}{d x}=\frac{\tan (x)}{y}$ with the initial condition $y(0)=-2$.

Question 13: (4 pts) Solve the following first order linear differential equation:

$$
x y^{\prime}=y+\frac{2 x^{2}}{x^{2}+1} \quad \text { with initial condition } y(\pi / 4)=\pi
$$

Question 14: ($\mathbf{6} \boldsymbol{p} \boldsymbol{p}$)) Given the function $f(x)=\left\{\begin{array}{lll}0 & \text { if } & -\pi \leqslant x<0 \\ x & \text { if } & 0 \leqslant x<\pi\end{array}\right.$ find a_{0}, a_{1} and b_{1} of the Fourier series of the function.

ANSWERS:

1.) a) $\frac{-2}{3}$
b) e^{2}
c) $\frac{-2}{5}$
2.) 1.72847
3.) a) $e^{\arccos (3 x)} \cdot \frac{-1}{\sqrt{1-(3 x)^{2}}} \cdot 3$
b) $4(\arctan (\sqrt{x}))^{3} \cdot \frac{1}{1+(\sqrt{x})^{2}} \cdot \frac{1}{2 \sqrt{x}}$
c) $\frac{1}{\arcsin \left(x^{3}\right)} \cdot \frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}$
4.) 1.4909
5.) 0.6629 rad or 37.98°
6.) $2.04 \mathrm{ft} / \mathrm{min}$
7.) a) $\mathbb{R} \backslash\{0,2\} \quad$ b) x-int: $(1,0)$ y-int: none
c) V.A.: $x=0$ and $x=2$ H.A.: $y=0$
d) Inc. never, Dec. on $]-\infty, 0[] 0,,2[$ and $] 2,+\infty[$
e) None
f) C.U.: $] 0,1[$ and $] 2,+\infty[$
C.D.:] $-\infty, 0[$ and]1, $2[\quad \mathrm{~g})(1,0)$

8.) $\frac{1}{2}$
9.)
a) $x^{2}+3 \ln |x-2|-5 \ln |x+1|+C$
b) $\frac{\cos ^{2}(x)}{2}-\ln |\cos (x)|+C$
c) $x \arccos (x)-\sqrt{1-x^{2}}+C$
d) $\frac{1}{2}(x+3) \sqrt{x^{2}+6 x+10}+\frac{1}{2} \ln \left|\sqrt{x^{2}+6 x+10}+x+3\right|+C$
e) $\frac{5}{12}\left(x^{3}+3 x+7\right)^{4 / 5}+C$
f) $\frac{1}{33} \tan ^{11}(3 x)+\frac{1}{27} \tan ^{9}(3 x)+C$
g) $\frac{1}{2}\left(3 x^{2}+2\right) e^{2 x}-\frac{3}{2} x e^{2 x}+\frac{3}{4} e^{2 x}+C$
10.) a) $\int_{0}^{1} \pi\left[\left(3+2 x^{3}\right)^{2}-2^{2}\right] d x$
b) $\frac{9 \pi}{5}$
11.) It is not a solution

$$
\text { 12.) } y=-\sqrt{\ln |\sec (x) \tan (x)|+4}
$$

13.) $y=2 x \arctan (x)+2 x$
14.) $a_{0}=\frac{\pi}{4} \quad a_{1}=\frac{-2}{\pi} \quad b_{1}=1$

