Question 1: (9 pts) Evaluate the following limits:
a) $\lim _{x \rightarrow \pi}\left(\frac{2 x-\pi}{\pi}\right)^{2 \csc (x)}$
b) $\lim _{x \rightarrow 0^{+}} \frac{\arctan (\sqrt{x})}{4 \sqrt{x}}$
c) $\lim _{x \rightarrow+\infty} x\left(e^{3 / x}-1\right)$

Question 2: ($9 \boldsymbol{p t s}$) Find the derivative of the following functions. Do not simplify your answer.
a) $y=3(4-\arccos (3 x))^{3}$
b) $y=\arctan \left(\frac{1-x}{1+x}\right)$
c) $f(x)=\int_{e^{x}}^{4} \frac{\tan \left(t^{2}\right)}{\operatorname{arcsec}(3 t+2)} d t$

Question 3: (4 pts) The altitude h (in m) of a rocket is given by $h(t)=-2 t^{3}+84 t^{2}+480 t+10$, where t represents the time of flight (in seconds). Knowing that the rocket will hit the ground between 35 s and 50 s, use Newton's method to find when the rocket will hit the ground. Give an answer that is accurate to 3 decimals. (Show all your work!)

Question 4: (5 pts) Use Simpson's Rule to approximate $\int_{3}^{4} \sqrt{\ln (x)+3} d x$, using $n=6$. Give an answer that is accurate to 4 decimals.

Question 5: (4 pts) Computer simulations show that the drag F (in N) on a certain airplane is given by $F=5.00 \times 10^{-3} v^{2}+\frac{3.00 \times 10^{8}}{v^{2}}$, where v is the velocity (in km / h) of the airplane. Find the velocity that will result in the minimum drag.

Question 6: (4 pts) An approximate relationship between the pressure P and volume V of the vapor in a diesel engine cylinder is given by $P \cdot V^{1.4}=k$, where k is a constant. At a certain instant, $P=4200 \mathrm{kPa}$, $V=75 \mathrm{~cm}^{3}$, and the volume is increasing a the rate of $850 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is the pressure changing at this instant?

Question 7: (12 pts)

Given $f(x)=\frac{(x-1)^{2}(2 x+1)}{x^{3}}, f^{\prime}(x)=\frac{3\left(x^{2}-1\right)}{x^{4}}$ and $f^{\prime \prime}(x)=\frac{6\left(2-x^{2}\right)}{x^{5}}$, find (if any):
a) The domain of f.
e) The local minima and maxima.
b) The x and y intercept(s).
f) The intervals of upward and downward concavity.
c) The vertical and horizontal asymptotes.
d) The intervals on which f is increasing or decreasing.
g) The points of inflection.
h) Sketch the graph of f.

Question 8: (4 pts) Using CAD (Computer Assisted Design), an architect programs a computer to sketch the shape of a swimming pool, designed between the curves of $y_{1}=\frac{800 x}{\left(x^{2}+10\right)^{2}}, y_{2}=0.5 x^{2}-4 x$ and $x=8$ (see figure). Find the surface area of the pool (the dimensions are in m).

Question 9: (28 pts) Evaluate the following integrals:
a) $\int \frac{4 x^{3}-15 x^{2}-6 x+23}{x^{2}-3 x-4} d x$
b) $\int \tan ^{3}(2 x) \sec ^{5}(2 x) d x$
c) $\int_{1}^{4} \frac{3 x^{2}}{\left(x^{3}+80\right)^{3 / 2}} d x$
d) $\int_{-3}^{1} \frac{3 x}{\sqrt{-x^{2}-6 x+55}} d x$
e) $\int \cos (x) \ln (\sin (x)) d x$
f) $\int\left(4 x^{2}-2\right) \cos (2 x) d x$
g) $\int \cot ^{6}(x) \sin ^{9}(x) d x$

Question 10: (4 pts) Consider the 2 regions R and S shown below. The parabola $y=9-\frac{x^{2}}{4}$ and the line $y=-x+10$ (which is tangent to the parabola) border these 2 regions.

Set up, but do not evaluate, the integral to find the volume of the solid obtained by revolving:
a) the region S about the y-axis.
b) the region R about the line $y=-2$.

Question 11: (3 pts) Determine whether or not the function $y=x^{3} \ln (x)$ is a solution of the differential equation $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=4 x^{3}$.

Question 12: (4 pts) Solve the following separable differential equation: $\frac{d y}{d x}=x y \sqrt{1+x^{2}}$ with the initial condition $y(0)=-1$.

Question 13: (4 pts) Solve the following first order linear differential equation:

$$
y^{\prime}+4 y=8 x \quad \text { with initial condition } y(0)=0
$$

Question 14: ($\mathbf{6} \mathbf{p t s}$) Given the function $f(x)=\left\{\begin{array}{lll}0 & \text { if } & -\pi \leqslant x<0 \\ 2 & \text { if } & 0 \leqslant x<\pi\end{array}\right.$ find a_{0}, a_{2} and b_{5} of the Fourier series of the function.

ANSWERS:

1.)
b) $\frac{1}{4}$
c) 3
2.) a) $\frac{27(4-\arccos (3 x))^{2}}{\sqrt{1-9 x^{2}}}$
b) $\frac{-1}{x^{2}+1}$
c) $\frac{-e^{x} \tan \left(e^{2 x}\right)}{\operatorname{arcsec}\left(3 e^{x}+2\right)}$
3.) $t=47.098 \mathrm{~s}$
4.) 2.0613
5.) $V=494.92 \mathrm{~km} / \mathrm{h}$
6.) $-66640 \mathrm{kPa} / \mathrm{s}$
7.) a) $\mathbb{R} \backslash\{0\} \quad$ b) x-int: $(1,0)$ and $\left(-\frac{1}{2}, 0\right)$
y-int: none c) V.A.: $x=0$ H.A.: $y=2$
d) Inc. on $]-\infty,-1[$ and $] 1,+\infty[$

Dec. on $]-1,0[$ and $] 0.1[$ e) Local min.: $(1,0)$ Local max.: $(-1,4)$
f) C.U.: $]-\infty,-\sqrt{2}[$ and $] 0, \sqrt{2}[$
C.D.:] $-\sqrt{2}, 0[$ and $] \sqrt{2},+\infty[$
g) $(-\sqrt{2}, 3.7678)$ and $(\sqrt{2}, 0.2323)$

8.) $77.26 \mathrm{~m}^{2}$
9.) a) $2 x^{2}-3 x+3 \ln |x-4|-2 \ln |x+1|+C$
b) $\frac{1}{14} \sec ^{7}(2 x)-\frac{1}{10} \sec ^{5}(2 x)+C$
c) $\frac{1}{18}$
d) $24-12 \sqrt{3}-\frac{3 \pi}{2}$
e) $\sin (x) \ln (\sin (x))-\sin (x)+C$
f) $\left(2 x^{2}-2\right) \sin (2 x)+2 x \cos (2 x)+C$
g) $\frac{1}{9} \cos ^{9}(x)-\frac{1}{7} \cos ^{7}(x)+C$
10.) a) $\pi \int_{0}^{8}(-y+10)^{2}-(36-4 y) d y$
b) $\pi \int_{-6}^{2}(-x+12)^{2}-\left(11-\frac{x^{2}}{4}\right)^{2} d x$
11.) It is a solution.
12.) $y=-e^{\left(\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}-\frac{1}{3}\right)}$
13.) $y=2 x-\frac{1}{2}+\frac{1}{2} e^{-4 x}$
14.) $\quad a_{0}=1 \quad a_{2}=0 \quad b_{5}=\frac{4}{5 \pi}$

