Mathematical Models II 201-225-AB Final Examination Winter 2010

Instructor: Bob DeJean

Please answer any questions with decimal answers to 4 decimal places.

2 mark questions

The current through an 20 H inductor is given by I = 25 sin(4 π t). What is the Root-Mean-Square of this current ?

Does
$$y = \frac{x}{x+1}$$
 satisfy the equation $x(x+1)y' = y$?

3 mark questions

Find the derivatives of the following functions:

$$y = \frac{\sin 3x}{x}$$

$$y = \tan(\ln(3x))$$

Find the derivatives

$$y = \sec \sqrt{x}$$

$$y = \tan^{-1}(x-5)$$

$$y = x^3 \ln(x-1)$$

$$y = \left(e^x - 2\right)^5$$

4 mark questions

Differentiate implicitly: $\sin x - \ln y = xy$

Find the equation of the line that is normal to $y = \sin^{-1} x$ at the point (0.6, 0.6435)

Use Newton's Method to solve x^5 + 6x - 100 = 0. Your answer should be accurate to 4 decimal places.

Daniel has a pet amphibian, a skink actually. He had a lot of trouble getting the special kind of fence that skinks cannot climb, but he was able to get about 16m of fence. He wants to build a rectangular pen for his skink. Three sides will be fenced; the fourth side will be the wall of his house, which is coated with Teflon. What dimensions will give the skink the maximum possible area to run around?

Integrate the following: $\int x^{-3} + \sqrt[3]{x} dx =$

$$\int x^{-3} + \sqrt[3]{x} dx =$$

$$\int_1^2 \frac{dx}{\left(3x-1\right)^4} =$$

$$\int \frac{\sec^2 x}{1 + \tan x} \, dx =$$

$$\int_1^4 e^{2x-1} dx =$$

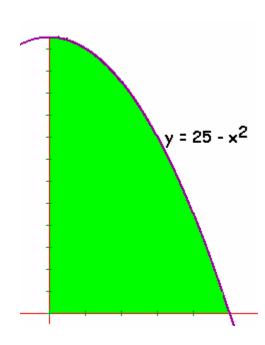
$$\int \sec x \tan x \, e^{\sec x} dx =$$

Integrate
$$\int 4\sin^2(3x)dx =$$

$$\int \frac{dx}{\sqrt{9-4x^2}} =$$

$$\int x \sin(4x) \, dx =$$

Find the area of this region:



What is the area under the curve $y = \frac{12}{x+1}$ between x = 2 and x = 3?

Use Simpson's Rule with n = 4 to approximate $\int_0^2 (x^2 + 1)^{0.3} dx =$

Chris spent his break in Cuba, on the beach, in the sun. Life is hard! One day he rolled down a steep slope starting at 3 m/s and accelerating at 2 m/s 2 . How fast was he moving 7 seconds later?

Solve for y:
$$x^3 y^2 y' = 666$$

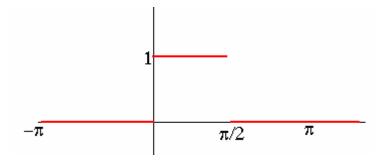
Solve for y:
$$y' + \frac{2y}{x} = x$$

6 mark question

Consider the function that is 1 for $0 \le x \le \frac{\pi}{2}$ and 0 for the rest of $-\pi$ to π .

Here is its graph:

I am interested in its Fourier Expansion.



What is $a_0 =$

What is $a_1 =$

What is b₁ =

Use these values to write the beginning of the Fourier Expansion of the function.

Answers

17.67

yes

$$y' = \frac{3x\cos 3x - \sin 3x}{x^2}$$

$$y' = \frac{\sec^2(\ln 3x)}{x}$$

$$y' = \frac{\sec\sqrt{x}\tan\sqrt{x}}{2\sqrt{x}}$$

$$y' = \frac{1}{1 + (x - 5)^2}$$

$$y' = 3x^2 \ln(x-1) + \frac{x^3}{x-1}$$

$$y' = 5 (e^x - 2)^4 e^x$$

$$y' = \frac{\cos x - y}{\frac{1}{y} + x}$$

$$y = -0.8x + 1.1235$$

2.4338

4 m by 8 m

$$-\frac{1}{2x^2} + \frac{3x^{4/3}}{4} + C$$

0.0130

$$ln(1 + tan x) + C$$

546.9574

$$e^{\text{secx}} + C$$

$$2x - 1/3 \sin 6x + C$$

 $\frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right) + C$

$$\frac{1}{2}\sin^{-1}\left(\frac{2x}{3}\right) + C$$

$$-\frac{x}{4}\cos 4x + \frac{1}{16}\sin 4x + C$$

83.3333

3.4521

2.5094

17 m/s
$$\frac{1}{3}y^3 = \frac{333}{x^2} + C$$

$$y = \frac{x^2}{4} + \frac{C}{x^2}$$

$$a_0 = \frac{1}{4}$$

$$a_1 = \frac{1}{\pi}$$

$$b_1 = \frac{1}{\pi}$$

$$\frac{1}{4} + \frac{1}{\pi}\cos x + \frac{1}{\pi}\sin x + \dots$$