Mathematical Models 2 Final Examination Winter 2011

Instructor: Bob DeJean

For numeric answers, please use 4 decimal places

2 mark questions

What is the Root-Mean-Square of this current: i = 15 sin(4t)?

Here are two currents: $i_1 = 3 + 4 \sin x + 5 \sin 2x + ...$

and $i_2 = 8 - 7 \sin x - 6 \sin 2x - ...$

What is the result of adding the currents?

Is
$$y = \frac{x}{x+1}$$
 a solution of $x^2y' + y^2 = 0$?

Is
$$y = x^3 - x^2$$
 a solution of $xy' = x^2 + 3y$?

3 mark questions

What is the equation of the line tangent to $y = \sqrt[5]{x}$ at the point where x = 32 ?

Find the derivatives:

$$y = 4 \sin 3x \cos 2x$$

$$y = \frac{tan^{-1}x}{x}$$

$$y = 5x \ln 5x$$

$$y = \sin^{-1}(e^x)$$

For what value of x does $y = 2x^3 - 15x^2 + 24x + 11$ reach its maximum between 0 and 6? For what value does it reach its minimum?

4 mark questions

Use Newton's Method to solve $x^3 + 5x - 11 = 0$ accurate to 4 decimal places.

Integrate:

$$\int 6x^3 - 4x^2 + 18x \ dx =$$

$$\int \frac{16}{\sqrt{x}} dx =$$

$$\int_4^{12} \sqrt{2x+1} dx =$$

Find this area:

Use Simpson's Rule with n= 6 to approximate this integral:

$$\int_{1}^{2.2} \frac{6}{1+x^3} \, dx$$

The charge on a capacitor is the integral of the current going through it. Start your capacitor off with a charge of 20 Coulombs and run a current of i = 5t (i in milliamps, t in seconds) through it. What is the charge after 4 seconds?

Find the area between $y = \sin x$, $y = \cos x$, x = 0 and x = 0.5.

$$\int \frac{(\ln x)^4}{x} dx =$$

$$\int_{3}^{4} \frac{dx}{x-1} =$$

Integrate
$$\int 8\sin 2x \cot 2x \ dx =$$

$$\int \sin^2 x \cos^3 x \, dx =$$

$$\int \frac{2x}{x^2 + 16} \, dx =$$

$$\int x^2 \ln(3x) \, dx =$$

Find the solution of
$$xy y' = 4$$

Find the solution of
$$xy' - 3y = 9x^5$$

Find the solution of
$$y' + y = x e^{-x}$$

6 mark question

Consider the function that is 2 for $0 \le x \le \frac{\pi}{4}$

and 0 for the rest of $-\pi$ to π . Here is its graph:

I am interested in its Fourier Expansion.

What is
$$a_0 =$$

What is
$$a_1 =$$

What is
$$b_1 =$$

Use these values to write the beginning of the Fourier Expansion of the function.

Backup

Find the equation of the line normal to $y = \frac{x}{x-4}$ at the point (6, 3).

$$y = \frac{secx}{x}$$

$$y = 7 \sin^{-1}(2x - 15)$$

$$y = \ln(8x^2)$$

????
$$y = ln\left(\frac{6x-13}{\sqrt{x}}\right)$$

$$y = 16x^3e^{5x}$$

Find the derivative implicitly: $x^2 - y^4 = x \sin y$

Bryan wants to fence an area of 1250 m² for his employees parking. To keep it simple, the parking lot will be a rectangle, with fence on 3 sides. The fourth side is along the side wall of the Les Entreprises Bryan building. What dimensions (length and width) use the minimum amount of fence ?

What is the <u>Differential</u> of $y = e^x - 3^x$?

$$\int (3x-5)^7 dx =$$

$$\int_{1}^{3} \frac{dx}{x^2} =$$

Find the area between $y = 2^x$, x = 1, x = 2 and the x-axis. A diagram might be useful.

Use the Trapezoidal Rule with n = 5 to approximate this area:

$$\int_{4}^{9} \ln x + 1 dx$$

What is the area between the two curves: $y = x^3$ and $y = 9x^2 - 24x$?

$$\int \sin x \cos x \, dx =$$

$$\int \frac{\sec 2x \tan 2x}{1 + \sec 2x} dx =$$

$$\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx =$$

$$\int \frac{dx}{\sqrt{9 - x^{2}}} =$$

$$\int 3x \cos 4x \ dx =$$

$$\int \sin(3x)\,e^{\cos(3x)}\,\,dx =$$

Find the solution of $\sin y y' - 4x = 0$

Answers

10.6066

 $11 - 3 \sin x - \sin 2x ...$

no

yes

$$y = 1/80 x + 1.6$$

 $y' = 12 \cos 3x \cos 2x - 8 \sin 3x \sin 2x$

$$y' = \frac{x - (1 + x^2)tan^{-1}x}{x^2(1 + x^2)}$$

$$y' = 5 \ln 5x + 5$$

$$y' = \frac{e^x}{\sqrt{1 - e^{2x}}}$$

Max at x = 6

Min at x = 4

$$1.5x^4 - 4/3x^3 + 9x^2 + C$$

$$32\sqrt{x} + C$$

32.6667

32.4

1.6434

This should be 20.040 coulombs, because milliamps changes the units to millicoulombs.

0.3570

$$\frac{1}{5}(\ln x)^5 + C$$

0.4054

$$4 \sin 2x + C$$

$$\frac{1}{3}sin^3x - \frac{1}{5}sin^5x + C$$

 $ln|x^2 + 16| + C$

$$||n|| x^2 + 16|| + C$$

$$\frac{1}{3}x^3\ln(3x) - \frac{1}{9}x^3 + C$$

$$y = \pm \sqrt{8 \ln|x| + C}$$

$$y = \frac{9}{2x} + \frac{C}{x^3}$$

$$y = \frac{9}{2x} + \frac{C}{x^3}$$

$$y = e^{-x} \left(\frac{x^2}{2} + C\right)$$

$$a_0 = 0.25$$

$$a_1 = 0.4505$$

$$b_1 = 0.1865$$

$$f = 0.25 + 0.4505 \cos x + ... + 0.1865$$

$$\sin x + ...$$