Mathematical Models 2
Final Examination
Winter 2011
Instructor: Bob DeJean

For numeric answers, please use 4 decimal places

2 mark questions
What is the Root-Mean-Square of this current: $i=15 \sin (4 t)$?

Here are two currents: $\mathrm{i}_{1}=3+4 \sin x+5 \sin 2 x+\ldots$
and $\quad i_{2}=8-7 \sin x-6 \sin 2 x-\ldots$
What is the result of adding the currents ?

Is $y=\frac{x}{x+1}$ a solution of $x^{2} y^{\prime}+y^{2}=0 ?$

Is $y=x^{3}-x^{2}$ a solution of $x y^{\prime}=x^{2}+3 y ?$

3 mark questions

What is the equation of the line tangent to $y=\sqrt[5]{x}$ at the point where $x=32$?

Find the derivatives:
$y=4 \sin 3 x \cos 2 x$
$y=\frac{\tan ^{-1} x}{x}$
$y=5 x \ln 5 x$
$y=\sin ^{-1}\left(e^{x}\right)$

For what value of x does $y=2 x^{3}-15 x^{2}+24 x+11$ reach its maximum between 0 and 6 ? For what value does it reach its minimum ?

4 mark questions

Use Newton's Method to solve $x^{3}+5 x-11=0$ accurate to 4 decimal places.

Integrate:
$\int 6 x^{3}-4 x^{2}+18 x d x=$
$\int \frac{16}{\sqrt{x}} d x=$

$$
\int_{4}^{12} \sqrt{2 x+1} d x=
$$

Find this area:

Use Simpson's Rule with $\mathrm{n}=6$ to approximate this integral:

$$
\int_{1}^{2.2} \frac{6}{1+x^{3}} d x
$$

The charge on a capacitor is the integral of the current going through it. Start your capacitor off with a charge of 20 Coulombs and run a current of $i=5 t$ (in milliamps, t in seconds) through it. What is the charge after 4 seconds ?

Find the area between $y=\sin x, y=\cos x, x=0$ and $x=0.5$.

Integrate:
$\int \frac{(\ln x)^{4}}{x} d x=$
$\int_{3}^{4} \frac{d x}{x-1}=$

Integrate
$\int 8 \sin 2 x \cot 2 x d x=$

$$
\int \sin ^{2} x \cos ^{3} x d x=
$$

$$
\int \frac{2 x}{x^{2}+16} d x=
$$

$$
\int x^{2} \ln (3 x) d x=
$$

Find the solution of $\quad x y y^{\prime}=4$

Find the solution of $\quad x y^{\prime}-3 y=9 x^{5}$

Find the solution of $\quad y^{\prime}+y=x e^{-x}$

6 mark question

Consider the function that is 2 for $0 \leq x \leq \frac{\pi}{4}$
and 0 for the rest of $-\pi$ to π. Here is its graph:

What is $\mathrm{a}_{0}=$

What is $\mathrm{a}_{1}=$

What is $b_{1}=$

Use these values to write the beginning of the Fourier Expansion of the function.

Backup

Find the equation of the line normal to $y=\frac{x}{x-4}$ at the point $(6,3)$.
$y=\frac{\sec x}{x}$
$y=7 \sin ^{-1}(2 x-15)$
$y=\ln \left(8 x^{2}\right)$
???? $y=\ln \left(\frac{6 x-13}{\sqrt{x}}\right)$
$y=16 x^{3} e^{5 x}$

Find the derivative implicitly: $x^{2}-y^{4}=x \sin y$
Bryan wants to fence an area of $1250 \mathrm{~m}^{2}$ for his employees parking. To keep it simple, the parking lot will be a rectangle, with fence on 3 sides. The fourth side is along the side wall of the Les Entreprises Bryan building. What dimensions (length and width) use the minimum amount of fence?

What is the Differential of $y=e^{x}-3^{x}$?
$\int(3 x-5)^{7} d x=$
$\int_{1}^{3} \frac{d x}{x^{2}}=$

Find the area between $y=2^{x}, x=1, x=2$ and the x-axis. A diagram might be useful.

Use the Trapezoidal Rule with $\mathrm{n}=5$ to approximate this area:

$$
\int_{4}^{9} \ln x+1 d x
$$

What is the area between the two curves: $y=x^{3}$ and $y=9 x^{2}-24 x$?

$$
\begin{aligned}
& \int \sin x \cos x d x= \\
& \int \frac{\sec 2 x \tan 2 x}{1+\sec 2 x} d x= \\
& \int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x= \\
& \int \frac{d x}{\sqrt{9-x^{2}}}= \\
& \int 3 x \cos 4 x d x= \\
& \int \sin (3 x) e^{\cos (3 x)} d x=
\end{aligned}
$$

Find the solution of $\sin y y^{\prime}-4 x=0$

Answers

10.6066
$11-3 \sin x-\sin 2 x \ldots$
no
yes
$y=1 / 80 x+1.6$
$y^{\prime}=12 \cos 3 x \cos 2 x-8 \sin 3 x \sin 2 x$
$y^{\prime}=\frac{x-\left(1+x^{2}\right) \tan ^{-1} x}{x^{2}\left(1+x^{2}\right)}$
$y^{\prime}=5 \ln 5 x+5$
$y^{\prime}=\frac{e^{x}}{\sqrt{1-e^{2 x}}}$
Max at $x=6$
Min at $x=4$
1.5106
$1.5 x^{4}-4 / 3 x^{3}+9 x^{2}+C$
$32 \sqrt{x}+C$
32.6667
32.4
1.6434

This should be 20.040 coulombs, because milliamps changes the units to millicoulombs.
0.3570
$\frac{1}{5}(\ln x)^{5}+C$
0.4054
$4 \sin 2 x+C$
$\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+C$
$\ln \left|x^{2}+16\right|+C$
$\frac{1}{3} x^{3} \ln (3 x)-\frac{1}{9} x^{3}+C$

$$
\begin{aligned}
& y= \pm \sqrt{8 \ln |x|+C} \\
& y=\frac{9}{2 x}+\frac{C}{x^{3}} \\
& y=\frac{9}{2 x}+\frac{C}{x^{3}} \\
& y=e^{-x}\left(\frac{x^{2}}{2}+C\right) \\
& \mathrm{a}_{0}=0.25 \\
& \mathrm{a}_{1}=0.4505 \\
& \mathrm{~b}_{1}=0.1865 \\
& \mathrm{f}=0.25+0.4505 \cos \mathrm{x}+\ldots+0.1865 \\
& \sin \mathrm{x}+\ldots
\end{aligned}
$$

