(4) 1. Solve the following system of equations: $\left\{\begin{array}{r}2 x_{1}-4 x_{2}-2 x_{3}+8 x_{4}=-4 \\ -3 x_{1}+4 x_{2}-2 x_{3}-2 x_{4}=0 \\ - \\ -2 x_{1}+3 x_{2}+3 x_{3}-9 x_{4}=\end{array}\right.$
(4) 2. Set up but DO NOT SOLVE a system of equations which would allow you to find the equation for the degree 2 polynomial passing through the points $(2,1)$ and $(-1,11)$ and which has a slope of 3 when $x=2$.
(6) 3. Given that $A=\left[\begin{array}{rrr}2 & -3 & -9 \\ 1 & -2 & -7 \\ -3 & 5 & 17\end{array}\right]$
(a) Find the inverse of A.
(b) Use the adjoint formula and the fact that $|A|=-1$ to find the adjoint of A.
(5) 4. Given the following matrix: $A=\left[\begin{array}{rrrr}3 & 5 & 0 & 4 \\ -1 & 3 & 1 & -2 \\ 0 & k & 0 & 1 \\ 0 & 4 & 0 & k\end{array}\right]$
(a) Find $|A|$ in terms of k.
(b) For what values of k is A non-invertible?
(5) 5. Let A be a 4×4 matrix with $|A|=-3$. Let B be a 4×4 non invertible matrix.

For each part, either provide an answer or write "not enough information".
(a) What the value of $|2 A|$?
(b) What is the value of $|A B|$?
(c) What is the value of $|A+B+I|$?
(d) What is the value of $\left|\left(A^{T} A\right)^{-1}\right|$?
(e) If M is the reduced row echelon form of A, what is the value of $|M|$?
(6) 6. Given the following matrix: $A=\left[\begin{array}{rrr}3 & 2 & 6 \\ 9 & 4 & 22 \\ -12 & -12 & -11\end{array}\right]$
(a) Write A as the product of a lower triangular matrix L and an upper triangular matrix U.
(b) Find elementary matrices E_{1}, E_{2} and E_{3} such that $E_{3} E_{2} E_{1} A=U$.
(4) 7. Let A and B be $n \times n$ matrices such that $A B$ is its own inverse i.e. $(A B)^{-1}=A B$.
(a) Which of the following is the inverse of $B A B$ (circle your answer)?
(i) $A B A$ (ii) $A B$ (iii) A (iv) $B A B$ (v) $B A$ (vi) B
(b) Is the matrix B necessarily invertible? Justify your answer.
(c) Evaluate and simplify $(A B+I)(A B+I)$.
(d) What is $(A B+I)^{28}$?
(8) 8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{3 z}{2 x-y}$ and let L be the line $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]+t\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$.
(a) Find the standard matrix for the transformation T.
(b) Sketch the image of the line L under T.
(c) Is T 1-1? onto? Justify your answer in each case.
(d) Let L_{0} be the line defined by $\left[\begin{array}{l}3 \\ 4 \\ b\end{array}\right]+t\left[\begin{array}{c}-2 \\ a \\ 2\end{array}\right]$. For what a, b does L_{0} define the same line as L.

(4) 10. Fill in each blank with the appropriate word. In each case, the appropriate word is either must, might or cannot. No justification is required.
(a) If A is an $n \times n$ matrix such that $\operatorname{det}(A)=0$, then the system of equations $A \vec{x}=\overrightarrow{0}$ \qquad have a solution.
(b) If B is a set of three linearly independent vectors in P_{2} (the vector space of all polynomials of degree less than or equal to 2) then B \qquad be a basis for P_{2}.
(c) If \vec{u} and \vec{v} are vectors in a vector space S then $3 \vec{u}-5 \vec{v}$ \qquad also be a vector in S.
(d) If a transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is onto, then there \qquad be a non-zero vector \vec{x} such that $T(\vec{x})=\overrightarrow{0}$.
(8) 11. Find a specific example of each of the following:
(a) A 3×3 matrix with every entry different such that $|A|=0$.
(b) Two orthogonal vectors in R^{3} that have no zero entries.
(c) Two 2×2 matrices $A \neq 0$ and $B \neq 0$ such that $A B=0$.
(d) A 2 dimensional subspace of the vector space P_{2}.
(7) 12. Given that $A=\left[\begin{array}{rrrrrrr}2 & 4 & 20 & 7 & 0 & 20 & 17 \\ 2 & -4 & -4 & -11 & -12 & -12 & -21 \\ 1 & 0 & 4 & -1 & -3 & 2 & -1 \\ -2 & 3 & 1 & 6 & 5 & -3 & 8\end{array}\right] \quad$ row reduces to $R=\left[\begin{array}{rrrrrrr}1 & 0 & 4 & 0 & -1 & 6 & 2 \\ 0 & 1 & 3 & 0 & -3 & -5 & -2 \\ 0 & 0 & 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for the column space of A.
(b) Find a basis for the row space of A.
(c) Find a basis for the null space of A.
(d) What is $\operatorname{rank}(A)$?
(e) What is $\operatorname{dim}(\operatorname{Nul}(A))$?
(f) What is $\operatorname{rank}\left(A^{T}\right)$?
(g) What is $\operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)$?
(6) 13. Let $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]:|x|=|y|\right\}$ be a subset of \mathbf{R}^{2}.
(a) Does H contain the zero vector of \mathbf{R}^{2} ? Justify.
(b) Is H closed under vector addition? Justify.
(c) Is H closed under scalar multiplication? Justify.
(d) Is H a vector subspace of \mathbf{R}^{2} ? Justify.
(5) 14. Let H be the set of all 2×2 matrices such that the sum of the entries in H is 0 .
(a) Give an example of an invertible matrix which belongs to H.
(b) Find a basis for this subspace of $M_{2 \times 2}$.
(c) What is the dimension of H ?
(3) 15. Find the point of intersection between the plane $3 x-2 y+5 z=3$ and the line $\mathbf{x}=\left[\begin{array}{r}-2 \\ -4 \\ 8\end{array}\right]+t\left[\begin{array}{r}2 \\ 2 \\ -3\end{array}\right]$.
(9) 16. Let P_{1} be the plane $2 x+3 y+3 z=-8$.

Let P_{2} be the plane $x+2 y+2 z=-6$.
Let P_{3} be the plane $x+2 y+2 z=1$.
(a) Find the equation of the line of intersection between P_{1} and P_{2}.
(b) What is the cosine of the angle between P_{1} and P_{2} ?
(c) Find the distance from P_{2} to P_{3}.
(6) 17. Let P be the plane containing the points $Q(1,2,3), R(2,3,3)$ and the origin $O(0,0,0)$.

Let S be the point $S(6,4,-2)$.
(a) Find a normal vector to P.
(b) Find an equation for the plane P (in standard form $a x+b y+c z=d$).
(c) Find an equation for the plane parallel to P through the point S (also in standard form).
(6) 18. Let $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ be a set of linearly independent vectors in a vector space V.
(a) Define what it means for the vectors in S to be linearly independent.
(b) Suppose $T: V \rightarrow W$ is a 1-1 linear transformation. Prove that the set $T(S)=\left\{T\left(\overrightarrow{v_{1}}\right), T\left(\overrightarrow{v_{2}}\right), \ldots, T\left(\overrightarrow{v_{n}}\right)\right\}$ is also linearly independent.

Answers: 1. $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-4 \\ 3 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{l}6 \\ 5 \\ 0 \\ 1\end{array}\right] 2 . a_{0}+2 a_{1}+4 a_{2}=1, a_{0}-a_{1}+a_{2}=11$, $a_{1}+4 a_{2}=3$ 3. a) $A^{-1}=\left[\begin{array}{ccc}-1 & -6 & -3 \\ -4 & -7 & -5 \\ 1 & 1 & 1\end{array}\right]$ b) $\operatorname{adj}(\mathrm{A})=(-1) A^{-1} 4$. a) $|A|=-3\left(k^{2}-4\right)$ b) $k=2, k=-25$. a) -48 b) 0 c) not enough info d) $\frac{1}{9}$ e) 16 . a) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}3 & 2 & 6 \\ 0 & -2 & 4 \\ 0 & 0 & 5\end{array}\right]$ b) $E_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,, $E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1\end{array}\right], E_{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$ 7. a) $(B A B)^{-1}=A$ b) Yes, since $(A B A) B=I$. c) $2(A B+I)$ d) $2^{27}(A B+I) 8$. a) $A=\left[\begin{array}{ccc}0 & 0 & 3 \\ 2 & -1 & 0\end{array}\right]$ b) The line is $x+3 y-3=0$. c) It is not $1-1$ but it is onto. d) $a=-2, b=-19$. $x_{3}=010$. a) might b) must c) must d) might 11. Answers will vary. 12. a) $\left\{\left[\begin{array}{c}2 \\ 2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}4 \\ -4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}7 \\ -11 \\ -1 \\ 6\end{array}\right]\right\}$ b) $\{(1,0,4,0,-1,6,2),(0,1,3,0,-3,-5,-2),(0,0,0,1,2,4,3)\} \quad$ c $)$ $\left\{\left[\begin{array}{c}-4 \\ -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 3 \\ 0 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-6 \\ 5 \\ 0 \\ -4 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ -3 \\ 0 \\ 0 \\ 1\end{array}\right]\right\} \mathrm{d}$
d) 3 e) 4 f) 3 g) 1 13. a) Yes b) No c) Yes d) No 14. a) Answers
will vary b) $\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right]\right\}$ c) $315 .(4,2,-1) 16$. a) $\left[\begin{array}{c}2 \\ -4 \\ 0\end{array}\right]+t\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ b) $\frac{14}{3 \sqrt{22}}$ c) $\frac{21}{9}$ 17. a) $(-3,3,-1)$ b) $-3 x+3 y-z=0$ c) $-3 x+3 y-z+4=0$

