(Marks)

- (4) 1. Solve the following system of equations: $\begin{cases} 2x_1 4x_2 2x_3 + 8x_4 = -4 \\ -3x_1 + 4x_2 x_3 2x_4 = 0 \\ -x_1 + 3x_2 + 3x_3 9x_4 = 5 \end{cases}$
- (4) 2. Set up but DO NOT SOLVE a system of equations which would allow you to find the equation for the degree 2 polynomial passing through the points (2,1) and (-1,11) and which has a slope of 3 when x=2.
- (6) 3. Given that $A = \begin{bmatrix} 2 & -3 & -9 \\ 1 & -2 & -7 \\ -3 & 5 & 17 \end{bmatrix}$
 - (a) Find the inverse of A.
 - (b) Use the adjoint formula and the fact that |A| = -1 to find the adjoint of A.
- (5) 4. Given the following matrix: $A = \begin{bmatrix} 3 & 5 & 0 & 4 \\ -1 & 3 & 1 & -2 \\ 0 & k & 0 & 1 \\ 0 & 4 & 0 & k \end{bmatrix}$
 - (a) Find |A| in terms of k.
 - (b) For what values of k is A non-invertible?
- (5) 5. Let A be a 4×4 matrix with |A| = -3. Let B be a 4×4 non invertible matrix. For each part, either provide an answer or write "not enough information".
 - (a) What the value of |2A|?
 - (b) What is the value of |AB|?
 - (c) What is the value of |A + B + I|?
 - (d) What is the value of $|(A^TA)^{-1}|$?
 - (e) If M is the reduced row echelon form of A, what is the value of |M|?
- (6) 6. Given the following matrix: $A = \begin{bmatrix} 3 & 2 & 6 \\ 9 & 4 & 22 \\ -12 & -12 & -11 \end{bmatrix}$
 - (a) Write A as the product of a lower triangular matrix L and an upper triangular matrix U.
 - (b) Find elementary matrices E_1 , E_2 and E_3 such that $E_3E_2E_1A=U$.
- (4) 7. Let A and B be $n \times n$ matrices such that AB is its own inverse i.e. $(AB)^{-1} = AB$.
 - (a) Which of the following is the inverse of BAB (circle your answer)?
 - (i) ABA (ii) AB (iii) A (iv) BAB (v) BA (vi) B
 - (b) Is the matrix B necessarily invertible? Justify your answer.
 - (c) Evaluate and simplify (AB + I)(AB + I).
 - (d) What is $(AB + I)^{28}$?
- (8) 8. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3z \\ 2x y \end{pmatrix}$ and let L be the line $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.
 - (a) Find the standard matrix for the transformation T.
 - (b) Sketch the image of the line L under T.
 - (c) Is T 1-1? onto? Justify your answer in each case.
 - (d) Let L_0 be the line defined by $\begin{bmatrix} 3 \\ 4 \\ b \end{bmatrix} + t \begin{bmatrix} -2 \\ a \\ 2 \end{bmatrix}$. For what a, b does L_0 define the same line as L.

(Marks)

- (4) 9. Use Cramer's Rule to find x_3 only in the following system: $\begin{cases} 5x_1 x_2 2x_3 = 7 \\ -4x_1 4x_2 + 7x_3 = 4 \\ -x_1 x_2 + 2x_3 = 1 \end{cases}$
- (4) 10. Fill in each blank with the appropriate word. In each case, the appropriate word is either must, might or *cannot*. No justification is required.
 - (a) If A is an $n \times n$ matrix such that $\det(A) = 0$, then the system of equations $A\vec{x} = \vec{0}$ have a solution.
 - (b) If B is a set of three linearly independent vectors in P_2 (the vector space of all polynomials of degree less than or equal to 2) then B be a basis for P_2 .
 - (c) If \vec{u} and \vec{v} are vectors in a vector space S then $3\vec{u} 5\vec{v}$ _____ also be a vector in S.
 - (d) If a transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is onto, then there be a non-zero vector \vec{x} such that $T(\vec{x}) = \vec{0}$.
- (8) 11. Find a specific example of each of the following:
 - (a) A 3×3 matrix with every entry different such that |A| = 0.
 - (b) Two orthogonal vectors in \mathbb{R}^3 that have no zero entries.
 - (c) Two 2×2 matrices $A \neq 0$ and $B \neq 0$ such that AB = 0.
 - (d) A 2 dimensional subspace of the vector space P_2 .
- (7) 12. Given that $A = \begin{bmatrix} 2 & 4 & 20 & 7 & 0 & 20 & 17 \\ 2 & -4 & -4 & -11 & -12 & -12 & -21 \\ 1 & 0 & 4 & -1 & -3 & 2 & -1 \\ -2 & 3 & 1 & 6 & 5 & -3 & 8 \end{bmatrix}$ row reduces to $R = \begin{bmatrix} 1 & 0 & 4 & 0 & -1 & 6 & 2 \\ 0 & 1 & 3 & 0 & -3 & -5 & -2 \\ 0 & 0 & 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$$R = \left[\begin{array}{cccccccc} 1 & 0 & 4 & 0 & -1 & 6 & 2 \\ 0 & 1 & 3 & 0 & -3 & -5 & -2 \\ 0 & 0 & 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

- (a) Find a basis for the column space of A.
- (b) Find a basis for the row space of A.
- (c) Find a basis for the null space of A.
- (d) What is rank(A)?
- (e) What is $\dim(\text{Nul}(A))$?
- (f) What is $rank(A^T)$?
- (g) What is $\dim(\operatorname{Nul}(A^T))$?
- (6) 13. Let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : |x| = |y| \right\}$ be a subset of \mathbb{R}^2 .
 - (a) Does H contain the zero vector of \mathbb{R}^2 ? Justify.
 - (b) Is H closed under vector addition? Justify.
 - (c) Is H closed under scalar multiplication? Justify.
 - (d) Is H a vector subspace of \mathbb{R}^2 ? Justify.
- (5) 14. Let H be the set of all 2×2 matrices such that the sum of the entries in H is 0.
 - (a) Give an example of an invertible matrix which belongs to H.
 - (b) Find a basis for this subspace of $M_{2\times 2}$.
 - (c) What is the dimension of H?
- (3) 15. Find the point of intersection between the plane 3x 2y + 5z = 3 and the line $\mathbf{x} = \begin{bmatrix} -2 \\ -4 \\ 8 \end{bmatrix} + t \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix}$.

(Marks)

(9) 16. Let P_1 be the plane 2x + 3y + 3z = -8.

Let P_2 be the plane x + 2y + 2z = -6.

Let P_3 be the plane x + 2y + 2z = 1.

- (a) Find the equation of the line of intersection between P_1 and P_2 .
- (b) What is the cosine of the angle between P_1 and P_2 ?
- (c) Find the distance from P_2 to P_3 .
- (6) 17. Let P be the plane containing the points Q(1,2,3), R(2,3,3) and the origin O(0,0,0).

Let S be the point S(6, 4, -2).

- (a) Find a normal vector to P.
- (b) Find an equation for the plane P (in standard form ax + by + cz = d).
- (c) Find an equation for the plane parallel to P through the point S (also in standard form).
- (6) 18. Let $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ be a set of linearly independent vectors in a vector space V.
 - (a) Define what it means for the vectors in S to be linearly independent.
 - (b) Suppose $T: V \to W$ is a 1-1 linear transformation. Prove that the set $T(S) = \{T(\vec{v_1}), T(\vec{v_2}),, T(\vec{v_n})\}$ is also linearly independent.

Answers: 1.
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ 5 \\ 0 \\ 1 \end{bmatrix} 2. \quad a_0 + 2a_1 + 4a_2 = 1, \ a_0 - a_1 + a_2 = 11,$$

$$a_1 + 4a_2 = 3 \text{ 3. a)} \quad A^{-1} = \begin{bmatrix} -1 & -6 & -3 \\ -4 & -7 & -5 \\ 1 & 1 & 1 \end{bmatrix} \text{ b) adj}(A) = (-1)A^{-1} \text{ 4. a)} \quad |A| = -3(k^2 - 4) \text{ b)} \quad k = 2, k = -25.$$

$$a) -48 \text{ b)} \quad 0 \text{ c)} \text{ not enough info d)} \quad \frac{1}{9} \text{ e)} \quad 1 \text{ 6. a)} \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 6 \\ 0 & -2 & 4 \\ 0 & 0 & 5 \end{bmatrix} \text{ b)} \quad E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \quad 7. \quad \text{a)} \quad (BAB)^{-1} = A \text{ b)} \quad \text{Yes, since } (ABA)B = I. \quad \text{c)} \quad 2(AB + I)$$

$$d) \quad 2^{27}(AB + I) \quad 8. \quad a) \quad A = \begin{bmatrix} 0 & 0 & 3 \\ 2 & -1 & 0 \end{bmatrix} \quad \text{b)} \quad \text{The line is } x + 3y - 3 = 0. \quad \text{c)} \quad \text{It is not } 1\text{-1 but it is onto.} \quad d) \quad a = -2, \quad b = -1 \quad 9. \quad x_3 = 0 \quad 10. \quad \text{a)} \quad \text{might b)} \quad \text{must c)} \quad \text{must d)} \quad \text{might } 11. \quad \text{Answers will vary.}$$

$$12. \quad a) \quad \begin{cases} \begin{bmatrix} 2 \\ 2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 4 \\ -4 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ -11 \\ -1 \\ 6 \end{bmatrix} \end{cases} \text{ b)} \quad \{(1,0,4,0,-1,6,2), (0,1,3,0,-3,-5,-2), (0,0,0,1,2,4,3)\} \text{ c)}$$

$$\left\{ \begin{bmatrix} -4 \\ -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -6 \\ 5 \\ 0 \\ -4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 5 \\ 0 \\ -4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 0 \\ -3 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} d) \ 3 \ e) \ 4 \ f) \ 3 \ g) \ 1 \ 13. \ a) \ Yes \ b) \ No \ c) \ Yes \ d) \ No \ 14. \ a) \ Answers$$

will vary b)
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \right\}$$
 c) 3 15. $(4, 2, -1)$ 16. a) $\begin{bmatrix} 2 \\ -4 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ b) $\frac{14}{3\sqrt{22}}$ c) $\frac{21}{9}$ 17. a) $(-3, 3, -1)$ b) $-3x + 3y - z = 0$ c) $-3x + 3y - z + 4 = 0$