1. (a) Solve the system:

$$
\begin{gathered}
x_{1}+x_{2}-x_{3}-2 x_{4}+x_{5}=1 \\
2 x_{1}+x_{2}+x_{3}+2 x_{4}-x_{5}=2 \\
x_{1}+2 x_{2}-4 x_{3}-8 x_{4}+5 x_{5}=1 \\
x_{2}-3 x_{3}-6 x_{4}+3 x_{5}=0
\end{gathered}
$$

(b) Write the zero vector in \mathbb{R}^{4} as a nontrivial linear combination of the columns of A, where A is the coefficient matrix for the system of equations in part a) of this question.
2. Let $A=\left[\begin{array}{rrr}2 & 6 & -5 \\ -1 & -3 & 3 \\ 1 & 4 & -6\end{array}\right]$.
(a) Find A^{-1}.
(b) Use your answer in part (a) to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{r}-2 \\ 1 \\ -1\end{array}\right]$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+1 \\ 2 y \\ x-1\end{array}\right]$.
(a) Is T linear? Justify.
(b) Is T one-to-one? Justify.
(c) Is T onto? Justify.
(d) Sketch the line $\left[\begin{array}{l}2 \\ 1\end{array}\right]+t\left[\begin{array}{r}-1 \\ 2\end{array}\right]$ then find its image under T.
4. Give an example of each of the following. If no such example is possible, explain why.
(a) A 2×3 matrix A such that the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
(b) A 2×3 matrix A where every entry is either 1 or -1 such that the tranformation $\mathbf{x} \mapsto A \mathbf{x}$ is NOT onto.
(c) A matrix A such that A^{2} is invertible but A is not.
(d) A nonzero matrix A such that $A^{2}=0$.
5. Let A and B be $n \times n$ matrices where B is invertible and A has linearly independent columns.
(a) Simplify $\left(B A B^{-1}\right)^{2}$.
(b) Simplify $\left(B A B^{-1}\right)^{-1}$.
(c) Does $B A B^{-1}$ have linearly independent columns? Justify your answer.
6. Let $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]$.
(a) For which value(s) of k is $\left[\begin{array}{l}3 \\ k\end{array}\right]$ in $\operatorname{Col}(A)$?
(b) For which value(s) of k is $\left[\begin{array}{l}3 \\ k\end{array}\right]$ in $\operatorname{Nul}(A)$?
(c) Give a basis for $\operatorname{Nul}\left(A^{2}\right)$.
(d) Is $\operatorname{Nul}(A)=\operatorname{Nul}\left(A^{2}\right)$? Justify your answer.
7. Fill in each blank with the missing word. In each case, the missing word is either, must, might or cannot.
(a) If $\mathbf{y} \in \operatorname{Col}(A)$ then $A \mathbf{x}=\mathbf{y}$ \qquad be inconsistent.
(b) If $\mathbf{y} \in \operatorname{Col}(A)$ then \mathbf{y} \qquad be in $\operatorname{Nul}(A)$.
(c) If $\mathbf{y} \in \operatorname{Col}(A)$ then \mathbf{y} \qquad be in Row $\left(A^{T}\right)$.
(d) If $\mathbf{y} \in \operatorname{Col}(A)$ and $\mathbf{x} \in \operatorname{Col}(A)$ then $\mathbf{x}+\mathbf{y}$ \qquad be in $\operatorname{Col}(A)$.
(e) If A is a 5×7 matrix then $\operatorname{Row}(A)$ and $\operatorname{Col}(A)$ \qquad have the same dimension.
(f) If A is a 5×7 matrix then $\operatorname{Nul}(A)$ \qquad be three-dimensional.
(g) If A is a 5×7 matrix of rank 4 , then $\operatorname{Nul}\left(A^{T}\right)$ \qquad be three-dimensional.
(h) If \mathbf{u} and \mathbf{v} are linearly independent then $\operatorname{Proj}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{Proj}_{\mathbf{v}} \mathbf{u}$ \qquad be equal.
8. Let W be an $n \times n$ matrix that is partitioned as $W=\left[\begin{array}{cc}0 & I \\ A & B\end{array}\right]$, where the matrix A is known to be invertible.
(a) Write W^{-1} as a partitioned matrix.
(b) Use part (a) to find M^{-1} where $M=\left[\begin{array}{rrrrr}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -3 & 3 & 2 & 6 \\ -1 & 2 & 2 & 1 & 5\end{array}\right]$.
9. Let $A=\left[\begin{array}{rrr}2 & -3 & 4 \\ 8 & -8 & 18 \\ 6 & -17 & 13\end{array}\right]$.
(a) Find a lower triangular matrix L and an upper triangular matrix U such that $A=L U$.
(b) Do the same for A^{T}. (Hint: No additional computation is required.)
(c) Find an elementary matrix E such that $E A=\left[\begin{array}{rrr}2 & -3 & 4 \\ 8 & -8 & 18 \\ 0 & -8 & 1\end{array}\right]$.
10. Let $A=\left[\begin{array}{llll}2 & 3 & 3 & 2 \\ 4 & 3 & 5 & 1 \\ 6 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4\end{array}\right]$, let $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$.
(a) Find $\operatorname{det}(A)$.
(b) Use Cramer's Rule to solve $A \mathbf{x}=\mathbf{b}$ for x_{4} ONLY.
(c) What is $\operatorname{det}\left(A^{-1} A^{T}\right)$?
(d) What is $\operatorname{det}(A \cdot \operatorname{adj}(A))$?
(e) Find the determinant of $B=\left[\begin{array}{rrrr}2 & 3 & 3 & 2 \\ 6 & 0 & 0 & 3 \\ 4 & 3 & 5 & 1 \\ 3 & -6 & -6 & 0\end{array}\right]$, noting that B is obtained from A by performing exactly two elementary row operations.
11. Let $\mathbf{u}_{1}=\left[\begin{array}{l}x \\ x \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}x \\ 2 \\ x\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}1 \\ x \\ -x\end{array}\right]$.
(a) For which value(s) of x will $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be linearly dependent?
(b) For which value(s) of x will $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be all of \mathbb{R}^{3} ?
(c) For which value(s) of x is $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a line in \mathbb{R}^{3} ?
(d) For which value(s) of x will $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be linearly dependent?
12. Let $V=\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: a=2 c, b d \leq 0\right\}$.
(a) Is $\mathbf{0} \in V$?
(b) Is V closed under scalar multiplication? Justify.
(c) Is V closed under vector addition? Justify.
(d) Is V a subspace of \mathbb{R}^{4} ?
13. Let $\mathcal{P}: x-4 y+2 z=3$ be a plane in \mathbb{R}^{3}.
(a) Does $\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right]+t\left[\begin{array}{l}3 \\ 2 \\ 4\end{array}\right]$ define the same plane \mathcal{P} ?
(b) Find the equation of a line perpendicular to \mathcal{P} passing through $Q(3,1,1)$.
(c) Find the distance from \mathcal{P} to $Q(3,1,1)$.
(d) Find the cosine of the angle between \mathcal{P} and the line: $t\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$.
(e) Is \mathcal{P} a subspace of \mathbb{R}^{3} ? Justify.
14. Given the parallel lines $\mathcal{L}_{1}:\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]+t\left[\begin{array}{r}2 \\ 1 \\ -3\end{array}\right]$ and $\mathcal{L}_{2}:\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]+t\left[\begin{array}{r}2 \\ 1 \\ -3\end{array}\right]$, find:
(a) An equation for the plane containing both \mathcal{L}_{1} and \mathcal{L}_{2}.
(b) The distance between \mathcal{L}_{1} and \mathcal{L}_{2}.
(c) The point on \mathcal{L}_{1} that is closest to the point $\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]$ on \mathcal{L}_{2}.
15. Let $V=\left\{p(x) \in \mathbb{P}_{2}: p^{\prime}(1)=p(1)\right.$ and $\left.p^{\prime}(2)=p(2)\right\}$. Given that V is a subspace of \mathbb{P}_{2}, find a basis for V and state the dimension of V.
16. Suppose that $T: V_{1} \rightarrow V_{2}$ is a one-to-one linear transformation and suppose that H is a nonzero subspace of the vector space V_{1}. Then $T(H)$, the set of all images of vectors in H under T, is a subspace of V_{2}.
(a) Define what it means for a set $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ to be a basis for H.
(b) Prove that $\operatorname{dim}(H)=\operatorname{dim}(T(H))$.
17. Suppose A is an $n \times n$ matrix such that $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for every $\mathbf{x} \in \mathbb{R}^{n}$. Note that if \mathbf{a}_{i} is the $\mathrm{i}^{\text {th }}$ column of A and \mathbf{e}_{i} is the $i^{\text {th }}$ column of the identity matrix $I_{n \times n}$, then $\mathbf{a}_{i}=A \mathbf{e}_{i}$.
(a) Show that each column of A is a unit vector.
(b) Show that $\left\|\mathbf{a}_{i}+\mathbf{a}_{j}\right\|^{2}=\left\|\mathbf{a}_{i}\right\|^{2}+\left\|\mathbf{a}_{j}\right\|^{2}$ for any two columns $\mathbf{a}_{i}, \mathbf{a}_{j}$ of A. What can you conclude about the vectors \mathbf{a}_{i} and \mathbf{a}_{i} ? (Hint: Pythagoras!)
(c) Show that $A^{T} A=I_{n \times n}$.
(d) Give an example of a 2×2 matrix A (other than the identity matrix) such that $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for every $\mathbf{x} \in \mathbb{R}^{n}$.

Solutions 1. a) $x_{1}=-2 x_{3}-4 x_{4}+1, x_{2}=3 x_{3}+6 x_{4}, x_{3}$ is free, x_{4} is free, $x_{5}=0 \quad$ b) $\mathbf{0}=$ $-6 \mathbf{a}_{1}+9 \mathbf{a}_{2}+\mathbf{a}_{3}+\mathbf{a}_{4}$ where \mathbf{a}_{i} is the $i^{\text {th }}$ column of $A . \quad$ 2. a) $A^{-1}=\left[\begin{array}{rrr}-6 & -16 & -3 \\ 3 & 7 & 1 \\ 1 & 2 & 0\end{array}\right]$
$\mathbf{x}=\left[\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right] \quad$ 3.a) No, since $T(\mathbf{0}) \neq \mathbf{0}$ b) Yes; prove that if $T\left(\mathbf{v}_{1}\right)=T\left(\mathbf{v}_{2}\right)$ then $\mathbf{v}_{1}=\mathbf{v}_{2}$ c) No, since for example the zero vector is not in Range (T) d) The image of the line is $(3,2,1)+t(-1,4,-1)$ Impossible b) $\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right]$ c) Impossible d) $\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$
5. a) $B A^{2} B^{-1}$ b) $B(B A)^{-1}$ c) Yes 6.
a) $k=6$ b) $k=3 / 2$ c) $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ d) They are equal. \quad 7. a) cannot b) might c) must d) must e) must f) might g) cannot h) cannot \quad 8. a) $W^{-1}=\left[\begin{array}{ccc}-A^{-1} B & A^{-1} \\ I & 0\end{array}\right]$ b) $M^{-1}=\left[\begin{array}{rrrrr}12 & 7 & 27 & -2 & -3 \\ 5 & 3 & 11 & -1 & -1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$ 9.a) $A=L U=\left[\begin{array}{rrr}1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1\end{array}\right]\left[\begin{array}{rrr}2 & -3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 5\end{array}\right]$ b) $A^{T}=(L U)^{T}=U^{T} L^{T}$ c) $E=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$ 10. a) $18 \mathrm{~b})-7 / 3$ c) 1 d) (18) ${ }^{4}$ e) $-18 \quad$ 11. a) $x=2$ b) Impossible c) $x=2$ d) $x= \pm 2 \quad$ 12. a) Yes b) Yes c) No d) No \quad 13. a) No b) $(3,1,1)+t(1,-4,2)$ c) $\frac{2 \sqrt{21}}{21}$ d) The angle is $\frac{\pi}{2}-\cos ^{-1}(-2 / \sqrt{21})$ e) No. It doesn't pass through the origin. \quad 14. a) $(0,1,-1)+s(2,2,3)+t(2,1,-3)$ b) $\frac{\sqrt{34^{2}+31^{2}+33^{2}}}{14}$ c) $\frac{1}{14}(-6,11,-5)$ 15. $\mathcal{B}=\left\{x^{2}-x+1\right\}$ and $\operatorname{dim}(V)=1 \quad$ 16. a) The vectors in \mathcal{B} are linearly independent and span H. b) Show that $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis for $T(H)$. \quad 17. a) $\left\|\mathbf{a}_{i}\right\|=\left\|A \mathbf{e}_{i}\right\|=\left\|\mathbf{e}_{i}\right\|=1$ b) $\left\|\mathbf{a}_{1}+\mathbf{a}_{j}\right\|^{2}=\left\|A \mathbf{e}_{i}+A \mathbf{e}_{j}\right\|^{2}=\left\|A\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right\|^{2}=\left\|\mathbf{e}_{i}+\mathbf{e}_{j}\right\|^{2}=\left\|\mathbf{e}_{i}\right\|^{2}+\left\|\mathbf{e}_{j}\right\|^{2}=\left\|A \mathbf{e}_{i}\right\|^{2}+\left\|A \mathbf{e}_{j}\right\|^{2}=\left\|\mathbf{a}_{i}\right\|^{2}+\left\|\mathbf{a}_{j}\right\|^{2}$ Conclusion: \mathbf{a}_{i} and \mathbf{a}_{j} are orthogonal. c) The entries along the diagonal are of the form $\mathbf{a}_{i} \cdot \mathbf{a}_{i}=\left\|\mathbf{a}_{i}\right\|^{2}=1$ and the entries off the diagonal are of the form $\mathbf{a}_{i} \cdot \mathbf{a}_{j}=0$ where $i \neq j$ since \mathbf{a}_{i} and \mathbf{a}_{j} are orthogonal. d) Any rotation matrix would work.

