1. (a) Solve the system:

$$x_1 + x_2 - x_3 - 2x_4 + x_5 = 1$$
$$2x_1 + x_2 + x_3 + 2x_4 - x_5 = 2$$
$$x_1 + 2x_2 - 4x_3 - 8x_4 + 5x_5 = 1$$
$$x_2 - 3x_3 - 6x_4 + 3x_5 = 0$$

- (b) Write the zero vector in \mathbb{R}^4 as a nontrivial linear combination of the columns of A, where A is the coefficient matrix for the system of equations in part a) of this question.
- 2. Let $A = \begin{bmatrix} 2 & 6 & -5 \\ -1 & -3 & 3 \\ 1 & 4 & -6 \end{bmatrix}$.
 - (a) Find A^{-1} .
 - (b) Use your answer in part (a) to solve $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}$.
- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} x+1 \\ 2y \\ x-1 \end{array}\right]$.
 - (a) Is T linear? Justify.
 - (b) Is T one-to-one? Justify.
 - (c) Is T onto? Justify.
 - (d) Sketch the line $\begin{bmatrix} 2 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ then find its image under T.
- 4. Give an example of each of the following. If no such example is possible, explain why.
 - (a) A 2×3 matrix A such that the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
 - (b) A 2×3 matrix A where every entry is either 1 or -1 such that the tranformation $\mathbf{x} \mapsto A\mathbf{x}$ is NOT onto.
 - (c) A matrix A such that A^2 is invertible but A is not.
 - (d) A nonzero matrix A such that $A^2 = 0$.
- 5. Let A and B be $n \times n$ matrices where B is invertible and A has linearly independent columns.
 - (a) Simplify $(BAB^{-1})^2$.
 - (b) Simplify $(BAB^{-1})^{-1}$.
 - (c) Does BAB^{-1} have linearly independent columns? Justify your answer.
- 6. Let $A = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$.
 - (a) For which value(s) of k is $\begin{bmatrix} 3 \\ k \end{bmatrix}$ in Col(A)?
 - (b) For which value(s) of k is $\begin{bmatrix} 3 \\ k \end{bmatrix}$ in Nul(A)?
 - (c) Give a basis for $Nul(A^2)$.
 - (d) Is $Nul(A) = Nul(A^2)$? Justify your answer.
- 7. Fill in each blank with the missing word. In each case, the missing word is either, must, might or cannot.

- (a) If $\mathbf{y} \in \text{Col}(A)$ then $A\mathbf{x} = \mathbf{y}$ be inconsistent.
- (b) If $\mathbf{y} \in \text{Col}(A)$ then \mathbf{y} _____ be in Nul(A).
- (c) If $\mathbf{y} \in \operatorname{Col}(A)$ then \mathbf{y} ______ be in Row (A^T) .
- (d) If $\mathbf{y} \in \operatorname{Col}(A)$ and $\mathbf{x} \in \operatorname{Col}(A)$ then $\mathbf{x} + \mathbf{y}$ _____ be in $\operatorname{Col}(A)$.
- (e) If A is a 5×7 matrix then Row(A) and Col(A) have the same dimension.
- (f) If A is a 5×7 matrix then Nul(A) ______ be three-dimensional.
- (g) If A is a 5×7 matrix of rank 4, then $Nul(A^T)$ ______ be three-dimensional.
- (h) If \mathbf{u} and \mathbf{v} are linearly independent then $\text{Proj}_{\mathbf{u}}\mathbf{v}$ and $\text{Proj}_{\mathbf{v}}\mathbf{u}$ ______ be equal.
- 8. Let W be an $n \times n$ matrix that is partitioned as $W = \begin{bmatrix} 0 & I \\ A & B \end{bmatrix}$, where the matrix A is known to be invertible.
 - (a) Write W^{-1} as a partitioned matrix.
 - (b) Use part (a) to find M^{-1} where $M = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -3 & 3 & 2 & 6 \\ -1 & 2 & 2 & 1 & 5 \end{bmatrix}$.
- 9. Let $A = \begin{bmatrix} 2 & -3 & 4 \\ 8 & -8 & 18 \\ 6 & -17 & 13 \end{bmatrix}$.
 - (a) Find a lower triangular matrix L and an upper triangular matrix U such that A = LU.
 - (b) Do the same for A^T . (Hint: No additional computation is required.)
 - (c) Find an elementary matrix E such that $EA = \begin{bmatrix} 2 & -3 & 4 \\ 8 & -8 & 18 \\ 0 & -8 & 1 \end{bmatrix}$.
- 10. Let $A = \begin{bmatrix} 2 & 3 & 3 & 2 \\ 4 & 3 & 5 & 1 \\ 6 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4 \end{bmatrix}$, let $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$.
 - (a) Find det(A).
 - (b) Use Cramer's Rule to solve $A\mathbf{x} = \mathbf{b}$ for x_4 ONLY.
 - (c) What is $\det(A^{-1}A^T)$?
 - (d) What is $\det(A \cdot \operatorname{adj}(A))$?
 - (e) Find the determinant of $B = \begin{bmatrix} 2 & 3 & 3 & 2 \\ 6 & 0 & 0 & 3 \\ 4 & 3 & 5 & 1 \\ 3 & -6 & -6 & 0 \end{bmatrix}$, noting that B is obtained from A by performing

exactly two elementary row operations.

11. Let
$$\mathbf{u}_1 = \begin{bmatrix} x \\ x \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} x \\ 2 \\ x \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ x \\ -x \end{bmatrix}$.

- (a) For which value(s) of x will $\{\mathbf{u}_1, \mathbf{u}_2\}$ be linearly dependent?
- (b) For which value(s) of x will Span{ $\mathbf{u}_1, \mathbf{u}_2$ } be all of \mathbb{R}^3 ?
- (c) For which value(s) of x is Span{ $\mathbf{u}_1, \mathbf{u}_2$ } a line in \mathbb{R}^3 ?

(d) For which value(s) of x will $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be linearly dependent?

12. Let
$$V = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a = 2c, \ bd \le 0 \right\}.$$

- (a) Is $0 \in V$?
- (b) Is V closed under scalar multiplication? Justify.
- (c) Is V closed under vector addition? Justify.
- (d) Is V a subspace of \mathbb{R}^4 ?
- 13. Let $\mathcal{P}: x 4y + 2z = 3$ be a plane in \mathbb{R}^3 .

(a) Does
$$\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$$
 define the same plane \mathcal{P} ?

- (b) Find the equation of a line perpendicular to \mathcal{P} passing through Q(3,1,1).
- (c) Find the distance from \mathcal{P} to Q(3,1,1).
- (d) Find the cosine of the angle between \mathcal{P} and the line: $t\begin{bmatrix} 2\\1\\-2\end{bmatrix}$.
- (e) Is \mathcal{P} a subspace of \mathbb{R}^3 ? Justify.

14. Given the parallel lines
$$\mathcal{L}_1: \begin{bmatrix} 0\\1\\-1 \end{bmatrix} + t \begin{bmatrix} 2\\1\\-3 \end{bmatrix}$$
 and $\mathcal{L}_2: \begin{bmatrix} 2\\3\\2 \end{bmatrix} + t \begin{bmatrix} 2\\1\\-3 \end{bmatrix}$, find:

- (a) An equation for the plane containing both \mathcal{L}_1 and \mathcal{L}_2 .
- (b) The distance between \mathcal{L}_1 and \mathcal{L}_2 .
- (c) The point on \mathcal{L}_1 that is closest to the point $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$ on \mathcal{L}_2 .
- 15. Let $V = \{p(x) \in \mathbb{P}_2 : p'(1) = p(1) \text{ and } p'(2) = p(2)\}$. Given that V is a subspace of \mathbb{P}_2 , find a basis for V and state the dimension of V.
- 16. Suppose that $T: V_1 \to V_2$ is a one-to-one linear transformation and suppose that H is a nonzero subspace of the vector space V_1 . Then T(H), the set of all images of vectors in H under T, is a subspace of V_2 .
 - (a) Define what it means for a set $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ to be a basis for H.
 - (b) Prove that $\dim(H) = \dim(T(H))$.
- 17. Suppose A is an $n \times n$ matrix such that $||A\mathbf{x}|| = ||\mathbf{x}||$ for every $\mathbf{x} \in \mathbb{R}^n$. Note that if \mathbf{a}_i is the i^{th} column of A and \mathbf{e}_i is the i^{th} column of the identity matrix $I_{n \times n}$, then $\mathbf{a}_i = A\mathbf{e}_i$.
 - (a) Show that each column of A is a unit vector.
 - (b) Show that $||\mathbf{a}_i + \mathbf{a}_j||^2 = ||\mathbf{a}_i||^2 + ||\mathbf{a}_j||^2$ for any two columns $\mathbf{a}_i, \mathbf{a}_j$ of A. What can you conclude about the vectors \mathbf{a}_i and \mathbf{a}_i ? (Hint: Pythagoras!)
 - (c) Show that $A^T A = I_{n \times n}$.
 - (d) Give an example of a 2×2 matrix A (other than the identity matrix) such that $||A\mathbf{x}|| = ||\mathbf{x}||$ for every $\mathbf{x} \in \mathbb{R}^n$.

Solutions 1. a) $x_1 = -2x_3 - 4x_4 + 1$, $x_2 = 3x_3 + 6x_4$, x_3 is free, x_4 is free, $x_5 = 0$ b) $0 = -6\mathbf{a}_1 + 9\mathbf{a}_2 + \mathbf{a}_3 + \mathbf{a}_4$ where \mathbf{a}_i is the i^{th} column of A. 2. a) $A^{-1} = \begin{bmatrix} -6 & -16 & -3 \\ 3 & 7 & 1 \\ 1 & 2 & 0 \end{bmatrix}$ b) $\mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$ 3.a) No, since $T(\mathbf{0}) \neq \mathbf{0}$ b) Yes; prove that if $T(\mathbf{v}_1) = T(\mathbf{v}_2)$ then $\mathbf{v}_1 = \mathbf{v}_2$ c) No, since for example the zero vector is not in Range(T) d) The image of the line is (3, 2, 1) + t(-1, 4, -1) 4. a) Impossible b) $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ c) Impossible d) $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$ 5. a) BA^2B^{-1} b) $B(BA)^{-1}$ c) Yes 6. a) k = 6 b) k = 3/2 c) $B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ d) They are equal. 7. a) cannot b) might c) must d) must e) must f) might g) cannot h) cannot 8. a) $W^{-1} = \begin{bmatrix} -A^{-1}B & A^{-1} \\ I & 0 \end{bmatrix}$ b) $M^{-1} = \begin{bmatrix} 12 & 7 & 27 & -2 & -3 \\ 5 & 3 & 11 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ 9.a) $A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix}$ b) $A^T = (LU)^T = U^TL^T$ c) $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 \end{bmatrix}$ 10. a) 18 b) -7/3 c) 1 d) $(18)^4$ e) -18 11. a) x = 2 b) Impossible c) x = 2 d) $x = \pm 2$ 12. a) Yes b) Yes c) No d) No 13. a) No b) (3, 1, 1) + t(1, -4, 2) c) $\frac{2\sqrt{21}}{21}$ d) The angle is $\frac{\pi}{2} - \cos^{-1}(-2/\sqrt{21})$ e) No. It doesn't pass through the origin. 14. a) (0, 1, -1) + s(2, 2, 3) + t(2, 1, -3) b) $\frac{\sqrt{34^2 + 31^2 + 33^2}}{14}$ c) $\frac{1}{14}(-6, 11, -5)$ 15. $B = \{x^2 - x + 1\}$ and $\dim(V) = 1$ 16. a) The vectors in B are linearly independent and span H. b) Show that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ is a basis for T(H). 17. a) $\|\mathbf{a}_1\| = \|A\mathbf{e}_1\| = \|\mathbf{e}_1\| = \|\mathbf{b}_1\| = 1$ b) $\|\mathbf{a}_1 + \mathbf{a}_2\|^2 = \|A\mathbf{e}_1 + A\mathbf{e}_2\|^2 = \|A\mathbf{e}_1 + \mathbf{e}_2\|^2 = \|\mathbf{e}_1 + \mathbf{e}_1\|^2 = \|\mathbf{e}_1 + \mathbf{e}_2\|^2 = \|\mathbf{e}_1 + \mathbf{e}_2\|^2 = \|\mathbf{e}_1 + \mathbf{e}_1\|^2 = \|\mathbf{e}_1 + \mathbf{e}_2\|^$