(Marks)

1. Given the following homogeneous system $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{rrrrr}
-1 & 0 & 2 & -1 & 0 \\
1 & 1 & -5 & 5 & 1 \\
2 & 2 & -10 & 10 & 3 \\
2 & 1 & -7 & 6 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

(a) Write the solution to the system in parametric vector form.
(b) Write the zero vector in \mathbb{R}^{4} as a nontrivial linear combination of the columns of A.
(c) Solve the system $A \mathbf{x}=\mathbf{a}_{3}$ where \mathbf{a}_{3} is the third column of the matrix A.
2. Use techniques of linear algebra to find a polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ such that $p(2)=0, p(-2)=32$ and $p^{\prime}(1)=-7$.
3. Let S be a set of vectors. In one short sentence, define what is meant by the span of S.
4. Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ k\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}0 \\ k \\ 2 k+3\end{array}\right]$ and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. For what value(s) of k is:
(a) $\operatorname{Span}(S)$ all of \mathbb{R}^{3} ?
(b) $\operatorname{Span}(S)$ a plane in \mathbb{R}^{3} ?
(c) $\operatorname{Span}(S)$ a line in \mathbb{R}^{3} ?
5. Suppose that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, and that $\mathbf{x}=2 \mathbf{u}+3 \mathbf{w}$ and $\mathbf{y}=\mathbf{v}+2 \mathbf{w}$. Prove that the set $\{\mathbf{u}, \mathbf{x}, \mathbf{y}\}$ is linearly independent.
6. Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $T_{1}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}-x+2 y \\ 2 x-3 y\end{array}\right]$.
(a) Find the standard matrix for T_{1}.
(b) Is T_{1} one-to-one or onto?
(c) If \mathbb{L} is the line $\left[\begin{array}{l}2 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ k\end{array}\right]$, then for what value (s) of k, will $T_{1}(\mathbb{L})$ be a horizontal line in \mathbb{R}^{2} ?
(d) Now suppose that the composition $T_{1} \circ T_{2}$ is also a linear transformation whose standard matrix is $\left[\begin{array}{rrr}1 & -2 & -3 \\ -3 & 5 & 7\end{array}\right]$.
i. If $T_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ then what is m ? What is n ?
ii. Find the standard matrix for T_{2}.
7. Let $A=\left[\begin{array}{ccc}2 & 2 & 1 \\ -4 & 1 & -7 \\ 6 & -9 & 1\end{array}\right]$.
(a) Find an $L U$ factorization of A, where L is unit lower triangular and U is upper triangular.
(b) Find elementary matrices E_{1}, E_{2} and E_{3} such that $E_{3} E_{2} E_{1} A=U$.
(c) Find the determinant of A.
8. Let A be a 4×4 matrix and let $\operatorname{det} A=-2$.
(a) Find $\operatorname{det}(B)$ where B is a matrix obtained from A by interchanging the second and third rows, then multiplying the first row by 6 .
(b) Find $\operatorname{det}(2 R)$ where R is the reduced row echelon form of A.
(c) Find $\operatorname{det}\left(A^{T} A^{2}(A)^{-1}\right)$.
(d) Find $\operatorname{det}(\operatorname{adj}(A))$.
9. Use Cramer's Rule to solve the system:

$$
\begin{aligned}
& 7 x-9 y=11 \\
& 4 x+5 y=-2
\end{aligned}
$$

(Marks)

10. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 5 \\ 1 & 1 & 8\end{array}\right]$.
(a) Find A^{-1}. Verify your answer.
(b) Use A^{-1} to solve the system $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{c}1 \\ 5 \\ -1\end{array}\right]$.
(c) Find matrices W, X, Y and Z such that $\left[\begin{array}{cc}O & A \\ 3 A^{T} & O\end{array}\right]\left[\begin{array}{cc}W & X \\ Y & Z\end{array}\right]=\left[\begin{array}{cc}I & O \\ O & I\end{array}\right]$.
11. Given $A=\left[\begin{array}{rrrrrrr}1 & 2 & 0 & 0 & 3 & 0 & -1 \\ 1 & 2 & 1 & 0 & 2 & 0 & -3 \\ 1 & 2 & 0 & 1 & 1 & 1 & 4 \\ 1 & 2 & 1 & 0 & 2 & 1 & 1 \\ 3 & 6 & 2 & 1 & 5 & 2 & 2\end{array}\right] \sim R=\left[\begin{array}{rrrrrrr}1 & 2 & 0 & 0 & 3 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for Row A.
(b) Find a basis for $\operatorname{Col} A$.
(c) Do either of the vectors $(2,2,2,2,6)^{T}$ or $(-5,1,1,2,1,0,0)^{T}$ belong to Nul A ? Justify.
(d) What is rank A^{T} ? What is $\operatorname{dim}\left(\operatorname{Nul} A^{T}\right)$?
12. Find a basis and determine the dimension for the vector space $V=\left\{p(x) \in \mathbb{P}_{2}: p(2)=0\right\}$.
13. Let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}: x y \geq 0\right\}$.
(a) Is $\mathbf{0}$ in W ? Justify your answer.
(b) Is W closed under scalar multiplication? Justify your answer.
(c) Is W closed under addition? Justify your answer.
(d) Is W a subspace of \mathbb{R}^{2} ? Explain.
14. Answer each of the following true or false. No justification is required. Given a plane \mathcal{P} in \mathbb{R}^{3} and a point Q not on the plane \mathcal{P} :
(a) There is exactly one plane parallel to \mathcal{P} containing Q.
(b) There is exactly one line parallel to \mathcal{P} containing Q.
(c) There is exactly one plane orthogonal to \mathcal{P} containing Q.
(d) There is exactly one line orthogonal to \mathcal{P} containing Q.
15. On the diagrams provided, draw:
(a) $\mathbf{u}+t \mathbf{v}: t \in \mathbb{R}$

(b) $\mathbf{u}-\operatorname{Proj}_{\mathbf{v}} \mathbf{u}$

16. Define the line $\mathcal{L}:\left[\begin{array}{r}-1 \\ 3\end{array}\right]+t\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(a) Find the distance from \mathcal{L} to the origin.
(b) For what a and b will the the line $\mathbf{x}=\left[\begin{array}{l}1 \\ a\end{array}\right]+t\left[\begin{array}{l}1 \\ b\end{array}\right]$ be the same line as \mathcal{L} ?
17. Recall that $\|\mathbf{v}\|^{2}=\mathbf{v}^{T} \mathbf{v}$. Suppose that A is the standard matrix for a transformation T and suppose that $A^{T}=A^{-1}$. Show that the magnitude of every vector is preserved by the transformation T i.e prove that $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ for all x.
18. If $\mathbf{u}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane $(\operatorname{denoted} \mathcal{P})$ in \mathbb{R}^{3}.
(a) Is \mathcal{P} a subspace of \mathbb{R}^{3} ? Justify your answer in one short sentence.
(b) Find the cosine of the angle between \mathbf{u} and \mathbf{v}
(c) Find an equation for \mathcal{P} in the form $a x+b y+c z=d$.
(d) Find the intersection of \mathcal{P} with the line containing the point $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ and parallel to the vector $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$.

ANSWERS: 1. a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=x_{3}\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-1 \\ -4 \\ 0 \\ 1 \\ 0\end{array}\right] \quad$ b) $\mathbf{0}=2 \mathbf{a}_{1}+3 \mathbf{a}_{2}+\mathbf{a}_{3}+0 \mathbf{a}_{4}+0 \mathbf{a}_{5}$ (This answer is not unique. It is obtained
$\operatorname{using} x_{3}=1$ and $\left.x_{4}=0.\right) \quad$ c) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-2 \\ -3 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-1 \\ -4 \\ 0 \\ 1 \\ 0\end{array}\right] \quad$ 2. $p(x)=\frac{x^{2}}{2}-8 x+14 \quad$ 3. The $S p a n$ of S is the set of all linear combinations of the vectors in S. $\begin{array}{llll}\text { 4. a) } k \neq 3, k \neq-1 & \text { b) } k=3, k=-1 & \text { c) Impossible } \quad \text { 5. Suppose }\end{array}$ $c_{1} \mathbf{u}+c_{2} \mathbf{x}+c_{3} \mathbf{y}=\mathbf{0}$. Then $c_{1} \mathbf{u}+c_{2}(2 \mathbf{u}+3 \mathbf{w})+c_{3}(\mathbf{v}+2 \mathbf{w})=\mathbf{0}$. Then $\left(c_{1}+2 c_{2}\right) \mathbf{u}+c_{3} \mathbf{v}+\left(3 c_{2}+2 c_{3}\right) \mathbf{w}=\mathbf{0}$. Since $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, this means $c_{1}+2 c_{2}=0, c_{3}=0,3 c_{2}+2 c_{3}=0$ which can only be true if $c_{1}=c_{2}=c_{3}=0$. Therefore $\{\mathbf{u}, \mathbf{x}, \mathbf{y}\}$ is linearly independent. \quad 6. a) $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -3\end{array}\right] \quad$ b) T is $1-1$ and onto. \quad c) $k=2 / 3 \quad$ d)-i. $m=3$, $n=2 \quad$ d)-ii. $\left[\begin{array}{ccc}-3 & 4 & 5 \\ -1 & 1 & 1\end{array}\right] \quad$ 7. a) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -3 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 2 & 1 \\ 0 & 5 & -5 \\ 0 & 0 & -17\end{array}\right] \quad$ b) $E_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$, $E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1\end{array}\right] \quad\left(E_{1}\right.$ and E_{2} may be switched $)$
c) $\operatorname{det} A=\operatorname{det} U=-170$
8. a) 12
b) 16
c) 4
d) -8
9. $x=37 / 71, y=-58 / 71$
10. a) $A^{-1}=\left[\begin{array}{ccc}-13 & 9 & -4 \\ -11 & 7 & -3 \\ 3 & -2 & 1\end{array}\right]$
b) $\mathbf{x}=\left[\begin{array}{c}36 \\ 27 \\ -8\end{array}\right]$
c) $W=0, X=\frac{1}{3}\left(A^{-1}\right)^{T}, Y=A^{-1}$,

(Marks)

$Z=0 \quad$ 11. a) $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 2 \\ 0 \\ 0 \\ 3 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ -2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 4\end{array}\right]\right\} \quad$ b) $\left.\mathcal{B}=\left\{\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 2\end{array}\right]\right\}$
c) Yes, $(-5,1,1,2,1,0,0)^{T} \in$
$\operatorname{Nul} A$
d) $\operatorname{rank} A^{T}=4, \operatorname{dim}\left(\operatorname{Nul} A^{T}\right)=1$
12. $\mathcal{B}=\left\{x^{2}-4, x-2\right\}, \operatorname{dim} V=2$
13. a) Yes
b) Yes. If $\left[\begin{array}{l}x \\ y\end{array}\right] \in W$ then $\left[\begin{array}{l}k x \\ k y\end{array}\right] \in W$ since $(k x)(k y)=k^{2}(x y)$ which is greater than or equal to 0 because $k^{2} \geq 0$ and $x y \geq 0$. c) No, since $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}-4 \\ -1\end{array}\right]$ are both in W but their sum is not. d) No $\begin{aligned} & \text { 14. a) True }\end{aligned}$ b) False \quad c) False \quad d) True

$$
15 . \mathrm{a})
$$

b)

16.a) $\frac{\sqrt{245}}{5} \quad$ b) $a=4, b=\frac{1}{2} \quad$ 17. $\|T(\mathbf{x})\|^{2}=\|A \mathbf{x}\|^{2}=(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{x}^{T} A^{-1} A \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}$. Since $\|\mathbf{x}\| \geq{ }_{0}$, if $\|T(\mathbf{x})\|^{2}=\|\mathbf{x}\|^{2}$ then $\|T(\mathbf{x})\|=\|\mathbf{x}\|$.
18. a) Yes, it is a span of some set of vectors.
b) $\frac{1}{\sqrt{15}}$
$-x+2 y+3 z=0 \quad$ d) $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$

