1. Given the following homogeneous system $A\mathbf{x} = \mathbf{0}$

$$\begin{bmatrix} -1 & 0 & 2 & -1 & 0 \\ 1 & 1 & -5 & 5 & 1 \\ 2 & 2 & -10 & 10 & 3 \\ 2 & 1 & -7 & 6 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- (a) Write the solution to the system in parametric vector form.
- (b) Write the zero vector in \mathbb{R}^4 as a nontrivial linear combination of the columns of A.
- (c) Solve the system $A\mathbf{x} = \mathbf{a}_3$ where \mathbf{a}_3 is the third column of the matrix A.
- 2. Use techniques of linear algebra to find a polynomial $p(x) = a_0 + a_1x + a_2x^2$ such that p(2) = 0, p(-2) = 32 and p'(1) = -7.
- 3. Let S be a set of vectors. In one short sentence, define what is meant by the span of S.
- 4. Let $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ k \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ k \\ 2k+3 \end{bmatrix}$ and let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$. For what value(s) of k is:
 - (a) Span(S) all of \mathbb{R}^3 ?
 - (b) Span(S) a plane in \mathbb{R}^3 ?
 - (c) Span(S) a line in \mathbb{R}^3 ?
- 5. Suppose that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, and that $\mathbf{x} = 2\mathbf{u} + 3\mathbf{w}$ and $\mathbf{y} = \mathbf{v} + 2\mathbf{w}$. Prove that the set $\{\mathbf{u}, \mathbf{x}, \mathbf{y}\}$ is linearly independent.
- 6. Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T_1\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} -x + 2y \\ 2x 3y \end{array}\right]$.
 - (a) Find the standard matrix for T_1 .
 - (b) Is T_1 one-to-one or onto?
 - (c) If \mathbb{L} is the line $\begin{bmatrix} 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ k \end{bmatrix}$, then for what value(s) of k, will $T_1(\mathbb{L})$ be a horizontal line in \mathbb{R}^2 ?
 - (d) Now suppose that the composition $T_1 \circ T_2$ is also a linear transformation whose standard matrix is $\begin{bmatrix} 1 & -2 & -3 \\ -3 & 5 & 7 \end{bmatrix}$.
 - i. If $T_2: \mathbb{R}^m \to \mathbb{R}^n$ then what is m? What is n?
 - ii. Find the standard matrix for T_2 .
- 7. Let $A = \begin{bmatrix} 2 & 2 & 1 \\ -4 & 1 & -7 \\ 6 & -9 & 1 \end{bmatrix}$.
 - (a) Find an LU factorization of A, where L is unit lower triangular and U is upper triangular.
 - (b) Find elementary matrices E_1 , E_2 and E_3 such that $E_3E_2E_1A=U$.
 - (c) Find the determinant of A.
- 8. Let A be a 4×4 matrix and let det A = -2.
 - (a) Find det(B) where B is a matrix obtained from A by interchanging the second and third rows, then multiplying the first row by 6.
 - (b) Find $\det(2R)$ where R is the reduced row echelon form of A.
 - (c) Find det $(A^T A^2 (A)^{-1})$.
 - (d) Find $\det(\operatorname{adj}(A))$.
- 9. Use Cramer's Rule to solve the system:

$$7x - 9y = 11$$
$$4x + 5y = -2$$

10. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 5 \\ 1 & 1 & 8 \end{bmatrix}$$
.

- (a) Find A^{-1} . Verify your answer.
- (b) Use A^{-1} to solve the system $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}$.
- (c) Find matrices W, X, Y and Z such that $\begin{bmatrix} O & A \\ 3A^T & O \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} I & O \\ O & I \end{bmatrix}.$

- (a) Find a basis for Row A.
- (b) Find a basis for Col A.
- (c) Do either of the vectors $(2,2,2,2,6)^T$ or $(-5,1,1,2,1,0,0)^T$ belong to Nul A? Justify.
- (d) What is rank A^T ? What is dim(Nul A^T)?
- 12. Find a basis and determine the dimension for the vector space $V = \{p(x) \in \mathbb{P}_2 : p(2) = 0\}$.

13. Let
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : xy \ge 0 \right\}$$
.

- (a) Is $\mathbf{0}$ in W? Justify your answer.
- (b) Is W closed under scalar multiplication? Justify your answer.
- (c) Is W closed under addition? Justify your answer.
- (d) Is W a subspace of \mathbb{R}^2 ? Explain.
- 14. Answer each of the following true or false. No justification is required. Given a plane \mathcal{P} in \mathbb{R}^3 and a point Q not on the plane \mathcal{P} :
 - (a) There is exactly one plane parallel to \mathcal{P} containing Q.
 - (b) There is exactly one line parallel to \mathcal{P} containing Q.
 - (c) There is exactly one plane orthogonal to \mathcal{P} containing Q.
 - (d) There is exactly one line orthogonal to \mathcal{P} containing Q.
- 15. On the diagrams provided, draw:
 - (a) $\mathbf{u} + t\mathbf{v} : t \in \mathbb{R}$

(b) $\mathbf{u} - \operatorname{Proj}_{\mathbf{v}} \mathbf{u}$

- 16. Define the line $\mathcal{L}: \begin{bmatrix} -1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - (a) Find the distance from \mathcal{L} to the origin.
 - (b) For what a and b will the the line $\mathbf{x} = \begin{bmatrix} 1 \\ a \end{bmatrix} + t \begin{bmatrix} 1 \\ b \end{bmatrix}$ be the same line as \mathcal{L} ?
- 17. Recall that $||\mathbf{v}||^2 = \mathbf{v}^T \mathbf{v}$. Suppose that A is the standard matrix for a transformation T and suppose that $A^T = A^{-1}$. Show that the magnitude of every vector is preserved by the transformation T i.e prove that $||T(\mathbf{x})|| = ||\mathbf{x}||$ for all x.
- 18. If $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ then Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane (denoted \mathcal{P}) in \mathbb{R}^3 .
 - (a) Is \mathcal{P} a subspace of \mathbb{R}^3 ? Justify your answer in one short sentence.
 - (b) Find the cosine of the angle between \mathbf{u} and \mathbf{v}
 - (c) Find an equation for \mathcal{P} in the form ax + by + cz = d.
 - (d) Find the intersection of \mathcal{P} with the line containing the point $\begin{bmatrix} 0\\1\\2 \end{bmatrix}$ and parallel to the vector $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$.

ANSWERS: 1. a)
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 b) $\mathbf{0} = 2\mathbf{a}_1 + 3\mathbf{a}_2 + \mathbf{a}_3 + 0\mathbf{a}_4 + 0\mathbf{a}_5$ (This answer is not unique. It is obtained
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$$

using
$$x_3 = 1$$
 and $x_4 = 0$.) c)
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 2. $p(x) = \frac{x^2}{2} - 8x + 14$ 3. The Span of S is the set of all linear combinations of the vectors in S .

of all linear combinations of the vectors in S. 4. a) $k \neq 3$, $k \neq -1$ b) k = 3, k = -1 c) Impossible 5. Suppose $c_1\mathbf{u} + c_2\mathbf{x} + c_3\mathbf{y} = \mathbf{0}$. Then $c_1\mathbf{u} + c_2(2\mathbf{u} + 3\mathbf{w}) + c_3(\mathbf{v} + 2\mathbf{w}) = \mathbf{0}$. Then $(c_1 + 2c_2)\mathbf{u} + c_3\mathbf{v} + (3c_2 + 2c_3)\mathbf{w} = \mathbf{0}$. Since $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, this means $c_1 + 2c_2 = 0$, $c_3 = 0$, $3c_2 + 2c_3 = 0$ which can only be true if $c_1 = c_2 = c_3 = 0$. Therefore $\{\mathbf{u}, \mathbf{x}, \mathbf{y}\}$ is linearly independent. 6. a) $A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$ b) T is 1 - 1 and onto. c) k = 2/3 d)-i. m = 3, m = 2 d)-ii. $\begin{bmatrix} -3 & 4 & 5 \\ -1 & 1 & 1 \end{bmatrix}$ 7. a) $A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 \\ 0 & 5 & -5 \\ 0 & 0 & -17 \end{bmatrix}$ b) $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$ (E_1 and E_2 may be switched) c) $\det A = \det U = -170$ 8. a) $\mathbf{12}$ b) $\mathbf{16}$ c) $\mathbf{4}$ d) -8 9. x = 37/71, y = -58/71 10. a) $A^{-1} = \begin{bmatrix} -13 & 9 & -4 \\ -11 & 7 & -3 \\ 3 & -2 & 1 \end{bmatrix}$ b) $\mathbf{x} = \begin{bmatrix} 36 \\ 27 \\ -8 \end{bmatrix}$ c) W = 0, $X = \frac{1}{3}(A^{-1})^T$, $Y = A^{-1}$,

$$n = 2 \qquad \text{d)-ii.} \quad \begin{bmatrix} -3 & 4 & 5 \\ -1 & 1 & 1 \end{bmatrix} \qquad 7. \quad \text{a)} \quad A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 \\ 0 & 5 & -5 \\ 0 & 0 & -17 \end{bmatrix} \qquad \text{b)} \quad E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$
 (E_1 and E_2 may be switched) c) $\det A = \det U = -170$ 8. a) 12 b) 16 c) 4 d) -8

9.
$$x = 37/71$$
, $y = -58/71$ 10. a) $A^{-1} = \begin{bmatrix} -13 & 9 & -4 \\ -11 & 7 & -3 \\ 3 & -2 & 1 \end{bmatrix}$ b) $\mathbf{x} = \begin{bmatrix} 36 \\ 27 \\ -8 \end{bmatrix}$ c) $W = 0$, $X = \frac{1}{3}(A^{-1})^T$, $Y = A^{-1}$

$$Z = 0 \qquad \text{11. a) } \mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\0\\0\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\-2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\-2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\4 \end{bmatrix} \right\} \qquad \text{b) } \mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\2 \end{bmatrix} \right\} \qquad \text{c) Yes, } (-5,1,1,2,1,0,0)^T \in \mathbb{R}^{2}$$

NulA d) rank $A^T = 4$, dim(Nul A^T) = 1 12. $\mathcal{B} = \{x^2 - 4, x - 2\}$, dimV = 2 13. a) Yes b) Yes. If $\begin{bmatrix} x \\ y \end{bmatrix} \in W$ then $\begin{bmatrix} kx \\ ky \end{bmatrix} \in W$ since $(kx)(ky) = k^2(xy)$ which is greater than or equal to 0 because $k^2 \ge 0$ and $xy \ge 0$. c) No, since $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -1 \end{bmatrix}$ are both in W but their sum is not. d) No 14. a) True b) False c) False d) True 15. a)

16.a) $\frac{\sqrt{245}}{5}$ b) a = 4, $b = \frac{1}{2}$ 17. $||T(\mathbf{x})||^2 = ||A\mathbf{x}||^2 = (A\mathbf{x})^T(A\mathbf{x}) = \mathbf{x}^TA^TA\mathbf{x} = \mathbf{x}^TA^{-1}A\mathbf{x} = \mathbf{x}^T\mathbf{x} = ||\mathbf{x}||^2$. Since $||\mathbf{x}|| \ge 0$, if $||T(\mathbf{x})||^2 = ||\mathbf{x}||^2$ then $||T(\mathbf{x})|| = ||\mathbf{x}||$. 18. a) Yes, it is a span of some set of vectors. b) $\frac{1}{\sqrt{15}}$ c)

$$-x + 2y + 3z = 0 \qquad \text{d)} \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$