Final Examination Calculus DDB 19 May 2017

1. Evaluate the following;:

o [ 2 /4¢§cos<y2> dydi
w [ /““ g /“jj‘y - dededy

/4 3sec(f)
2. Evaluate / / 3 sin?(#) dr df, by changing to Cartesian coordinates.
/4

2 x
3. Combine the sum / / Va2 +y? dydr +

0o Jo
coordinates. (Do not evaluate the integral).

V5 pVB—2Z 5
4. Given / / / Va2 +y? dzdy dx:
0 0 x24y2

(a) Sketch the solid region over which we are integrating.

2V2  p/8—2?
/ v/ 22 + y2 dy dx into one double integral in polar
0

(b) Express (do not evaluate) the above integral as:
(i) a triple integral in cylindrical coordinates.
(ii) a triple integral in spherical coordinates.

5. Let f(x,y,2) = v —y® — 222, Given a point P (—4,—2,1) on the level surface S defined by f(x,y,2) = 2. Find:
(a) an equation of the tangent plane to S at the point P.

(b) the directional derivative of f at P in the direction of ¥ = (3,6, —2).
(¢) the maximum rate of change in f at P.
(d) the tangent line to C' at the point P, where C' is the curve intersecting S and the plane 2x — 3y — z = —3.

6. Find and classify the critical points of f(z,y) = 223 + xy? + 522 + y>.

7. Use the method of Lagrange multipliers to find the maximum value of the function f(z,y,2) = = 4+ 2y + 3z on the curve of
intersection of the plane z — y + z = 1 and the cylinder 22 + 32 = 1.

8. Find % for each of the following:

Ox
(a) z = x*cos(x?y?),
|
(b) given z = n(v), where u = 2 sin(y) and v = y? cos(z).

w3
9. If 2 = zy + f(2® + y?), show that yg xg;—y — 22
10. Sketch and name the following:

(a) the polar curve r = 1 — 2 cos(f),

(b) the surface p? = 1 + 3p? cos?(¢),

Y

)
(c) the level curve of f(z,y) = o corresponding to ¢ = —1,
)

(d) the space curve 7(t) = {(e! cos(t), e sin(t), e?).

11. Let C be the curve with parametric equations: z =t — 3t, y =

(a) Find:

14t2°

d
(i) the = and y intercepts. (i) ﬁ (iii) all points of horizontal or vertical tangency.

(b) Sketch the graph of C and give its orientation.

(c) Set up (but do not evaluate) an integral expression for the area bounded by the loop.

12. Suppose that a curve C given by parametric equations in ¢ passes through the origin when ¢ = 0, and satisfies
dx

i —3sin(t) cos?(t), dy _ 3sin?(t) cos(t).

dt
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13.
14.

15.

16.

17.

18.

(a) Find the parametric equations for the curve.

(b) Find the length of the curve from ¢t =0 to t = 7.
Prove that if a particle’s speed is constant then its acceleration is directed towards the unit normal vector N.

Compute the curvature of the circular helix 7#(¢) = (a cos(wt), a sin(wt), bt), with a > 0.

(z+y)°
Given f(z,y) = ¢ 22 + 5y?’ 0), determine the set of all points at which f is continuous.
0 if (z,y) = (0,0)

B 2

Let f(z) = / %n(t) dt. Find:
0

(a) the Maclaurin series for f(x).

(b) the radius of convergence of f(x).

(c) an estimate for f(0.5) correctly to within 3 decimal places (justify your calculations).

(a) Find the third degree Taylor polynomial T3(x) for f(z) = xIn(x) centered at ¢ = 1.
(b) Estimate the error in using T5(x) to approximate f(z) on the closed interval [0.5,1.5].
3
2

Find the Taylor series expansion for f(x) =
22 —x—

5 about = 1. (Hint: partial fractions)

Answers

1. (a) 5 sin(16) (b) 27

3 T
2. 2/ / y? dy dx = il
o Jo 2
V8 /4
3. / / r2 df dr
0 0

4. a) Lower boundary is one quarter of an upright paraboloid, cut off by the 2z and yz planes (first octant), upper boundary is

the plane z = 5.

w/2 V5 b
b) i) / / / 72 dz dr df (order of integration of # and r can be interchanged)
0 0 r2

w/2 pmw/4  pBsecd w/2 pw/2 pcotpescd
i) / / / p2sin? ¢ dp do do + / / / p2sin? ¢ dp do db
0 0 0 0 /4 Jo

5.a) (z+4)—12(y+2)—4(z2—1)=0 b) =8 ¢) V161  d)

N ey
I
—
-
+
[
\
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6. Local minimum at (0,0), local maximum at (—2,0), saddle points at (—1,2) and (-1, —2).

7. 3429

8. a) 43 cos(z?y?) — 225y3 sin(z2y?3)

3ln(v) o . y? sin(z)
b) —— 3 (327sin(y)) — —5 =
9. Let u = 22 + 2, then % :y+g—£2x and g—; :x+%2y.
10. a) Limagcon c) Circle of radius % centered at (0, —1).
2 2
~0.6 —0.4
1

d) A ‘helix’ of expanding radius, defined only for z > 0.

8t
(1412)2(3t2 —3)
iii) Horizontal tangent at (0,4), vertical tangent at (—2,2) and (2,2).

11. a) i) (0,4), (0,1), no z—intercepts. ii) —

b)The graph is oriented counterclockwise.
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12. a) z = cos®(t) — 1, y = sin®(¢)

d
13. If v is constant then d—qtj

CLLUQ

a2w? + b2

15. R%\ {(0,0)}

14. k=

16. a) > 2(—1)"(42f2)2

17. a) (z— 1)+

18. i —(z—1)" (1 + (2—n1+)1")

Total: 0 points

; .
5 units

= 0, so there is no tangential component of acceleration.
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This is the end of the examination.



