1. Evaluate the following:
(a) $\int_{0}^{2} \int_{x^{2}}^{4} \sqrt{y} \cos \left(y^{2}\right) d y d x$
(b) $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} z d z d x d y$
2. Evaluate $\int_{-\pi / 4}^{\pi / 4} \int_{0}^{3 \sec (\theta)} r^{3} \sin ^{2}(\theta) d r d \theta$, by changing to Cartesian coordinates.
3. Combine the sum $\int_{0}^{2} \int_{0}^{x} \sqrt{x^{2}+y^{2}} d y d x+\int_{2}^{2 \sqrt{2}} \int_{0}^{\sqrt{8-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ into one double integral in polar coordinates. (Do not evaluate the integral).
4. Given $\int_{0}^{\sqrt{5}} \int_{0}^{\sqrt{5-x^{2}}} \int_{x^{2}+y^{2}}^{5} \sqrt{x^{2}+y^{2}} d z d y d x$:
(a) Sketch the solid region over which we are integrating.
(b) Express (do not evaluate) the above integral as:
(i) a triple integral in cylindrical coordinates.
(ii) a triple integral in spherical coordinates.
5. Let $f(x, y, z)=x-y^{3}-2 z^{2}$. Given a point $P(-4,-2,1)$ on the level surface S defined by $f(x, y, z)=2$. Find:
(a) an equation of the tangent plane to S at the point P.
(b) the directional derivative of f at P in the direction of $\vec{v}=\langle 3,6,-2\rangle$.
(c) the maximum rate of change in f at P.
(d) the tangent line to C at the point P, where C is the curve intersecting S and the plane $2 x-3 y-z=-3$.
6. Find and classify the critical points of $f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
7. Use the method of Lagrange multipliers to find the maximum value of the function $f(x, y, z)=x+2 y+3 z$ on the curve of intersection of the plane $x-y+z=1$ and the cylinder $x^{2}+y^{2}=1$.
8. Find $\frac{\partial z}{\partial x}$ for each of the following:
(a) $z=x^{4} \cos \left(x^{2} y^{3}\right)$,
(b) given $z=\frac{\ln (v)}{u^{3}}$, where $u=x^{3} \sin (y)$ and $v=y^{2} \cos (x)$.
9. If $z=x y+f\left(x^{2}+y^{2}\right)$, show that $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=y^{2}-x^{2}$.
10. Sketch and name the following:
(a) the polar curve $r=1-2 \cos (\theta)$,
(b) the surface $\rho^{2}=1+3 \rho^{2} \cos ^{2}(\phi)$,
(c) the level curve of $f(x, y)=\frac{y}{x^{2}+y^{2}}$ corresponding to $c=-1$,
(d) the space curve $\vec{r}(t)=\left\langle e^{t} \cos (t), e^{t} \sin (t), e^{t}\right\rangle$.
11. Let C be the curve with parametric equations: $x=t^{3}-3 t, y=\frac{4}{1+t^{2}}$.
(a) Find:
(i) the x and y intercepts.
(ii) $\frac{d y}{d x}$.
(iii) all points of horizontal or vertical tangency.
(b) Sketch the graph of C and give its orientation.
(c) Set up (but do not evaluate) an integral expression for the area bounded by the loop.
12. Suppose that a curve C given by parametric equations in t passes through the origin when $t=0$, and satisfies $\frac{d x}{d t}=-3 \sin (t) \cos ^{2}(t), \frac{d y}{d t}=3 \sin ^{2}(t) \cos (t)$.
(a) Find the parametric equations for the curve.
(b) Find the length of the curve from $t=0$ to $t=\frac{\pi}{2}$.
13. Prove that if a particle's speed is constant then its acceleration is directed towards the unit normal vector \vec{N}.
14. Compute the curvature of the circular helix $\vec{r}(t)=\langle a \cos (\omega t), a \sin (\omega t), b t\rangle$, with $a>0$.
15. Given $f(x, y)=\left\{\begin{array}{cl}\frac{(x+y)^{2}}{x^{2}+5 y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}, \quad\right.$ determine the set of all points at which f is continuous.
16. Let $f(x)=\int_{0}^{x} \frac{\arctan \left(t^{2}\right)}{t} d t$. Find:
(a) the Maclaurin series for $f(x)$.
(b) the radius of convergence of $f(x)$.
(c) an estimate for $f(0.5)$ correctly to within 3 decimal places (justify your calculations).
17. (a) Find the third degree Taylor polynomial $T_{3}(x)$ for $f(x)=x \ln (x)$ centered at $c=1$.
(b) Estimate the error in using $T_{3}(x)$ to approximate $f(x)$ on the closed interval $[0.5,1.5]$.
18. Find the Taylor series expansion for $f(x)=\frac{3}{x^{2}-x-2}$ about $x=1$. (Hint: partial fractions)

Answers

1. (a) $\frac{1}{2} \sin (16) \quad$ (b) 2π
2. $2 \int_{0}^{3} \int_{0}^{x} y^{2} d y d x=\frac{27}{2}$
3. $\int_{0}^{\sqrt{8}} \int_{0}^{\pi / 4} r^{2} d \theta d r$
4. a) Lower boundary is one quarter of an upright paraboloid, cut off by the $x z$ and $y z$ planes (first octant), upper boundary is the plane $z=5$.

b) i) $\int_{0}^{\pi / 2} \int_{0}^{\sqrt{5}} \int_{r^{2}}^{5} r^{2} d z d r d \theta$ (order of integration of θ and r can be interchanged)
ii) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{5 \sec \phi} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta+\int_{0}^{\pi / 2} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\cot \phi \csc \phi} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta$
5. a) $(x+4)-12(y+2)-4(z-1)=0$
b) $-\frac{61}{7}$
c) $\sqrt{161}$
d) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ -3\end{array}\right) t+\left(\begin{array}{c}-4 \\ -2 \\ 1\end{array}\right)$
6. Local minimum at $(0,0)$, local maximum at $\left(-\frac{5}{3}, 0\right)$, saddle points at $(-1,2)$ and $(-1,-2)$.
7. $3+\sqrt{29}$
8. a) $4 x^{3} \cos \left(x^{2} y^{3}\right)-2 x^{5} y^{3} \sin \left(x^{2} y^{3}\right)$
b) $-\frac{3 \ln (v)}{u^{4}}\left(3 x^{2} \sin (y)\right)-\frac{y^{2} \sin (x)}{u^{3} v}$
9. Let $u=x^{2}+y^{2}$, then $\frac{\partial z}{\partial x}=y+\frac{\partial f}{\partial u} 2 x$ and $\frac{\partial z}{\partial y}=x+\frac{\partial f}{\partial u} 2 y$.
10. a) Limaçon

b) Hyperboloid in one sheet
c) Circle of radius $\frac{1}{2}$ centered at $\left(0,-\frac{1}{2}\right)$.

d) A 'helix' of expanding radius, defined only for $z>0$.
11. a) i) $(0,4),(0,1)$, no x-intercepts. ii) $-\frac{8 t}{\left(1+t^{2}\right)^{2}\left(3 t^{2}-3\right)}$
iii) Horizontal tangent at (0,4), vertical tangent at $(-2,2)$ and $(2,2)$.
b)The graph is oriented counterclockwise.

c) $\int_{\sqrt{3}}^{-\sqrt{3}} \frac{12\left(t^{2}-1\right)}{t^{2}+1} d t$
12. a) $x=\cos ^{3}(t)-1, y=\sin ^{3}(t)$
b) $\frac{3}{2}$ units
13. If v is constant then $\frac{d v}{d t}=0$, so there is no tangential component of acceleration.
14. $\kappa=\frac{a \omega^{2}}{a^{2} \omega^{2}+b^{2}}$
15. $\mathbb{R}^{2} \backslash\{(0,0)\}$
16. a) $\sum_{n=0}^{\infty} 2(-1)^{n} \frac{x^{4 n+2}}{(4 n+2)^{2}}$
b) $1 \quad$ c) 0.124
17. a) $(x-1)+\frac{1}{2}(x-1)^{2}-\frac{1}{6}(x-1)^{3}$
b) $\frac{1}{24}$
18. $\sum_{n=0}^{\infty}-(x-1)^{n}\left(1+\frac{(-1)^{n}}{2^{n+1}}\right)$
