- (5) 1. Find Maclaurin series for the following functions, using known series and state their radii of convergence:
 - (a) $f(x) = (8 + x^2)^{2/3}$
 - (b) $q(x) = \sin x \cos x$
- (6) 2. Let $g(x) = \int_0^x \frac{\ln(1+t)}{t} dt$, if $x \neq 0$ and g(0) = 0.
 - (a) Find the Maclaurin series for g(x); express your answer in \sum form and state the radius of convergence.
 - (b) Find g(0.2) correct to 3 decimal places.
 - (c) Find $q^{(7)}(0)$.
- (7) 3. For the function $f(x) = x^2 e^{x-1}$:
 - (a) Find the third degree polynomial $T_3(x)$ centered at a=1 and an expression for the remainder $R_3(x)$.
 - (b) Use $T_3(x)$ to approximate f(1/2).
 - (c) Estimate the maximum error of your approximation using Taylor's inequality or Lagrange's form of the remainder.
- (6) 4. Given the curve C having parametric equations: $x = -(t^3 + 3t), y = t^2$
 - (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Simplify your answers.
 - (b) Find, if any, intercepts and points on \mathcal{C} where the tangent line is vertical or horizontal.
 - (c) Sketch the graph of $\mathcal C$ showing the orientation of the curve.
 - (d) Set up, **but do not evaluate**, an integral needed to find the area of the region bounded by C, the y-axis and y = 4.
- (8) 5. Given the polar curves $r_1 = 1 2\cos\theta$ and $r_2 = 1 \cos\theta$, do the following:
 - (a) Sketch both graphs on the same axes.
 - (b) Find all the points of intersection for $\theta \in [0, 2\pi]$.
 - (c) Set up, **but do not evaluate**, the integral needed to find the area of the region inside r_1 and outside r_2 .
 - (d) Find the length of r_2 .
- (10) 6. Let \mathcal{C} be the space curve represented by $\mathbf{r}(t) = \langle e^t, \sqrt{2} t, e^{-t} \rangle$.
 - (a) Find a set of the parametric equations for the tangent line to \mathcal{C} at P(1,0,1).
 - (b) Find an equation (in ax + by + cz = d form) of the normal plane of \mathcal{C} at P(1,0,1).
 - (c) Find the length of the curve for $0 \le t \le 1$.
 - (d) Find the curvature at any point.
 - (e) Find the tangential and normal components of the acceleration vector $(a_T \text{ and } a_N)$ at any point.

- (6) 7. Sketch and give the name of the following surfaces:
 - (a) $y z^2 = 0$
 - (b) $x^2 + 9z^2 3y^2 + 9 = 0$
 - (c) $\rho = \cos \phi$
- (4) 8. Find the limit if it exists or show that it does not exist.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{xy\cos^2(y)}{4x^2+3y^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$
- (7) 9. Let $f(x, y, z) = x^3y^4z^2$ and P(1, 1, 1).
 - (a) Find the direction in which the maximum rate of change of f at P occurs.
 - (b) What is the maximum rate of change?
 - (c) Find an equation (in ax + by + cz = d form) of the tangent plane to the level surface $x^3y^4z^2 = 1$ at the point P.
 - (d) If $x^3y^4z^2 = 1$, find $\frac{\partial z}{\partial y}$.
 - (e) Find the directional derivative of f at P in the direction \overrightarrow{PQ} where Q(3,2,5).
 - (f) Show that the space curve $\mathbf{r}(t) = \langle -t^2 + 2, 1, t^3 \rangle$ is tangent to the level surface $x^3y^4z^2 = 1$ at P(1, 1, 1).
- (3) 10. Let $f(x, y, z) = \sqrt{xyz}$.
 - (a) Find the total differential of f.
 - (b) Approximate f(1.9, 2.02, 4.05) using the differential of f.
- (3) 11. Find a set of parametric equations for the tangent line to the curve of intersection of the paraboloid $z = x^2 + y^2$ and the ellipsoid $2x^2 + y^2 + z^2 = 76$ at the point (2, 2, 8).
- (4) 12. Let z = f(u, v) where $u = x^2 + y^2$ and v = x y. Find $\frac{\partial^2 z}{\partial x^2}$.
- (5) 13. Find and classify the critical points of $f(x,y) = y^2x yx^2 + xy$.
- (5) 14. Use the method of Lagrange multipliers to find the maximum and minimum of f(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.
- (8) 15. Evaluate
 - (a) $\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, dy dx$
 - (b) $\int_0^2 \int_0^{\sqrt{4-x^2}} \sqrt{4-y^2-x^2} \, dy dx$
- (3) 16. Rewrite the integral $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} dz dy dx$ in the order dx dy dz (do not evaluate).

- (5) 17. Sketch the region below the paraboloid $z = x^2 + y^2$, above the xy-plane and inside the cylinder $x^2 + y^2 = 2x$. Set up (**do not evaluate**) triple integrals needed to find its volume in
 - (a) cartesian coordinates
 - (b) cylindrical coordinates
- (5) 18. Show that the solid bounded below by the cone $z=\sqrt{x^2+y^2}$ and above by the sphere $x^2+y^2+z^2=2az$ where a>0 has volume $V=\pi a^3$.