1. Use power series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\ln (1-x)+\sin x}
$$

2. (a) Use the binomial series to find the Maclaurin series for $f(x)=\frac{1}{\sqrt{1-x^{2}}}$ and give its radius of convergence.
(b) Using this series, find the Maclaurin series for $\arccos (x)\left(\right.$ Hint: $\left.(\arccos (x))^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\right)$.
3. Let $g(x)=\int_{0}^{x}\left(\arctan \left(t^{3}\right)+\sin \left(t^{3}\right)\right) d t$
(a) Find the Maclaurin series for $g(x)$; express your answer in \sum form and give its radius of convergence.
(b) Find $g(0.5)$ correct to 6 decimal places.
4. For the function $f(x)=x^{2 / 3}$:
(a) Find the third degree Taylor polynomial $T_{3}(x)$ centered at $a=1$ and an expression for the remainder $R_{3}(x)$.
(b) Estimate the maximum error of approximation $f(x) \simeq T_{3}(x)$ when x lies in the interval [0.5, 1.5].
5. Let \mathcal{C} be the curve with parametric equations: $\left\{\begin{array}{l}x=1-t^{2} \\ y=t^{3}-4 t\end{array} \quad t \in \mathbb{R}\right.$
(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(b) Locate all intercepts and points of horizontal or vertical tangency.
(c) Use the above information to help you sketch \mathcal{C}; show the orientation of the curve.
(d) The curve forms a loop. Set up (do not evaluate) the integral needed to find the total area inside the loop.
6. (a) Sketch the polar curves $r_{1}=\sin \theta$ and $r_{2}=\cos (2 \theta)$ on the same axes.
(b) Find all the points of intersection for $\theta \in[0,2 \pi]$.
(c) Set up (do not evaluate) the integral needed to calculate the area inside the first curve $\left(r_{1}\right)$ and outside the second $\left(r_{2}\right)$.
(d) Set up (do not evaluate) the integral needed to calculate the length of one petal of the rose curve $r_{2}=\cos (2 \theta)$.
7. Let \mathcal{C} be the space curve represented by $\mathbf{r}(t)=\left\langle\frac{t^{2}}{2}, \ln t, t \sqrt{2}\right\rangle$, where $t>0$.
(a) Find the length of the curve from $t=1$ to $t=5$.
(b) Find the curvature at $t=1$.
(c) Find the tangential and normal components of the acceleration vector (a_{T} and a_{N}) at $t=1$.
8. Let $\mathbf{r}(t)$ be any smooth space curve with unit tangent vector \mathbf{T} and binormal vector \mathbf{B}. Show that $\mathbf{B}^{\prime} \cdot \mathbf{T}=0$ (Hint: Start with $\mathbf{B} \cdot \mathbf{T}=0$).
9. Sketch and give the name of the following surfaces:
(a) $y=x^{2}+4 z^{2}+1$
(b) $z=\sqrt{r^{2}-9}$
(c) $\rho=4 \sin \phi \cos \theta$
10. Find the limit if it exists or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{3}}{x^{4}+2 y^{4}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}}$
11. Consider the level surface $\mathcal{S}: F(x, y, z)=2 x^{2}+2 y^{2}-z^{2}=0$ and the point $P(1,1,2)$.
(a) Find the direction in which the maximum rate of change of F at P occurs.
(b) What is the maximum rate of change?
(c) Find the directional derivative of F at P in the direction $\mathbf{v}=\langle 2,-1,-2\rangle$.
(d) Find a vector tangent to the curve of intersection of \mathcal{S} and the hyperbolic paraboloid $z=3 x^{2}-y^{2}$ at P.
12. Let $z=f(x, y)=\sqrt{2 x^{3}+y^{2}}$.
(a) Find the total differential of f.
(b) Find an equation of the tangent plane to this surface at $P(2,3,5)$.
(c) Use this tangent plane to approximate $f(2.02,2.97)$.
13. Let $z=f(u)$ where $u=x^{2}+y^{2}$ Show that

$$
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=4\left(x^{2}-y^{2}\right) \frac{d^{2} f}{d u^{2}}
$$

14. Find and classify the critical points of $f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y^{2}-9 x$.
15. Use the method of Lagrange multipliers to find the maximum and minimum of $f(x, y, z)=z$ subject to the constraints $g(x, y, z)=x+y+z-12=0$ and $h(x, y, z)=x^{2}+y^{2}-z=0$.
16. Set up the double integral in cartesian coordinates (do not evaluate): $\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{3} \sin (2 \theta) d r d \theta$
17. Evaluate the integrals (sketch the regions).
(a) $\int_{0}^{1} \int_{\arctan y}^{\pi / 4} \sec x d x d y$
(b) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4}\left(x^{2}+y^{2}\right) d z d y d x$
18. Let \mathcal{S} be the solid region above the cone $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$, and below the sphere $x^{2}+y^{2}+z^{2}=9$. Evaluate $\iiint_{\mathcal{S}} \sqrt{x^{2}+y^{2}+z^{2}} d V$.
19. Sketch the solid region \mathcal{S} in the first octant bounded by the coordinate planes and the surfaces $z=1-x^{2}$ and $x+y=1$. Set up (do not evaluate) a triple integral needed to find its volume.

Answers

1. -2
2. (a) $\frac{1}{\sqrt{1-x^{2}}}=1+\frac{x^{2}}{2}+\sum_{n=2}^{\infty} \frac{(2 n-1)!!x^{2 n}}{2^{n} n!} \quad R=1$
(b) $\arccos x=\frac{\pi}{2}-\left(x+\frac{x^{3}}{6}+\sum_{n=2}^{\infty} \frac{(2 n-1)!!x^{2 n+1}}{2^{n} n!(2 n+1)}\right) \quad R=1$
3. (a) $g(x)=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{2 n+1}+\frac{1}{(2 n+1)!}\right) \frac{x^{6 n+4}}{6 n+4} \quad R=1$
(b) $g(0.5) \simeq 0.031201$
4. (a) $T_{3}(x)=1+\frac{2(x-1)}{3}-\frac{(x-1)^{2}}{9}+\frac{4(x-1)^{3}}{81}$

$$
R_{3}(x)=\frac{-7(x-1)^{4}}{243 z^{10 / 3}} \quad \text { where } z \text { is between } x \text { and } 1
$$

(b) $\left|R_{3}(x)\right| \leq 0.018147$
5. (a) $\frac{d y}{d x}=\frac{4-3 t^{2}}{2 t}$ and $\frac{d^{2} y}{d x^{2}}=\frac{3 t^{2}+4}{4 t^{3}}$
(b) Intercepts: $(0, \pm 3)(t= \pm 1),(-3,0)(t= \pm 2)$ and $(1,0)(t=0)$,
V.T. at $(1,0)(t=0)$ and H.T. at $(-1 / 3, \pm 16 \sqrt{3} / 9)(t= \pm 2 / \sqrt{3})$
(c)

(d) $A=2 \int_{0}^{2}\left(t^{3}-4 t\right)(-2 t) d t=-4 \int_{0}^{2}\left(t^{4}-4 t^{2}\right) d t$

6. (a)
(b) Points of intersection are $(0,0),(1 / 2, \pi / 6),(1 / 2,5 \pi / 6),(-1,3 \pi / 2)=(1, \pi / 2)$
(c) $A=2(1 / 2) \int_{\pi / 6}^{\pi / 2}\left\{\sin ^{2} \theta-\cos ^{2}(2 \theta)\right\} d \theta$
(d) $\mathcal{L}=2 \int_{0}^{\pi / 4} \sqrt{1+3 \sin ^{2}(2 \theta)} d \theta$
7. (a) $\mathcal{L}=12+\ln 5$
(b) $\kappa(1)=\frac{\sqrt{2}}{4}$
(c) $a_{T}(1)=0$ and $a_{N}(1)=\sqrt{2}$
8. Note that $\mathbf{B}^{\prime} \cdot \mathbf{T}+\mathbf{B} \cdot \mathbf{T}^{\prime}=0, \mathbf{T}^{\prime}=\left\|\mathbf{T}^{\prime}\right\| \mathbf{N}$ and $\mathbf{B} \cdot \mathbf{N}=0$. It follows that $\mathbf{B} \cdot \mathbf{T}^{\prime}=\left\|\mathbf{T}^{\prime}\right\| \mathbf{B} \cdot \mathbf{N}=0$ so $\mathbf{B}^{\prime} \cdot \mathbf{T}=0$
9. (a) elliptic paraboloid $\left(y-1=x^{2}+4 z^{2}\right)$
(b) Top half of Hyperboloid of one sheet
(c) Sphere $\left((x-2)^{2}+y^{2}+z^{2}=4\right)$
10. (a) The limit is 0 .
(b) The limit does not exist.
11. (a) $\frac{\langle 1,1,-1\rangle}{\sqrt{3}}$
(b) $4 \sqrt{3}$
(c) $D_{\mathbf{u}} f(P)=4$
(d) $\langle 3,5,8\rangle$
12. (a) $d z=\frac{3 x^{2}}{\sqrt{2 x^{3}+y^{2}}} d x+\frac{y}{\sqrt{2 x^{3}+y^{2}}} d y$
(b) $z-5=\frac{12}{5}(x-2)+\frac{3}{5}(y-3)$
(c) $f(2.02,2,97) \simeq 5.03$
13. $\frac{\partial^{2} z}{\partial x^{2}}=2 \frac{d f}{d u}+4 x^{2} \frac{d^{2} f}{d u^{2}} \quad$ due to symmetry: $\quad \frac{\partial^{2} z}{\partial y^{2}}=2 \frac{d f}{d u}+4 y^{2} \frac{d^{2} f}{d u^{2}}$ Subtract to get the given equation.
14. There are 4 critical points. The points $(-1,2),(3,0)$ are all saddle points, $(3,2)$ is a local minimum and $(-1,0)$ is a local maximum.
15. The maximum is $f(-3,-3,18)=18$ and the minimum is $f(2,2,8)=8$.
16. $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} 2 x y d y d x$
17. (a) $\sqrt{2}-1$
(b) $\frac{32 \pi}{3}$
18. $\frac{81 \pi}{4}$
19. $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} d z d y d x$

