1. Use power series to evaluate the limit

$$\lim_{x \to 0} \frac{\sin^2 x}{\ln(1-x) + \sin x}$$

- 2. (a) Use the binomial series to find the Maclaurin series for $f(x) = \frac{1}{\sqrt{1-x^2}}$ and give its radius of convergence.
 - (b) Using this series, find the Maclaurin series for $\arccos(x)$ (Hint: $(\arccos(x))' = -\frac{1}{\sqrt{1-x^2}}$).
- 3. Let $g(x) = \int_0^x (\arctan(t^3) + \sin(t^3)) dt$
 - (a) Find the Maclaurin series for g(x); express your answer in \sum form and give its radius of convergence.
 - (b) Find g(0.5) correct to 6 decimal places.
- 4. For the function $f(x) = x^{2/3}$:
 - (a) Find the third degree Taylor polynomial $T_3(x)$ centered at a=1 and an expression for the remainder $R_3(x)$.
 - (b) Estimate the maximum error of approximation $f(x) \simeq T_3(x)$ when x lies in the interval [0.5, 1.5].
- 5. Let $\mathcal C$ be the curve with parametric equations: $\left\{\begin{array}{ll} x&=&1-t^2\\ y&=&t^3-4t \end{array}\right. \quad t\in\mathbb R$
 - (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - (b) Locate all intercepts and points of horizontal or vertical tangency.
 - (c) Use the above information to help you sketch C; show the orientation of the curve.
 - (d) The curve forms a loop. Set up (**do not evaluate**) the integral needed to find the total area inside the loop.
- 6. (a) Sketch the polar curves $r_1 = \sin \theta$ and $r_2 = \cos(2\theta)$ on the same axes.
 - (b) Find all the points of intersection for $\theta \in [0, 2\pi]$.
 - (c) Set up (**do not evaluate**) the integral needed to calculate the area inside the first curve (r_1) and outside the second (r_2) .
 - (d) Set up (**do not evaluate**) the integral needed to calculate the length of one petal of the rose curve $r_2 = \cos(2\theta)$.
- 7. Let $\mathfrak C$ be the space curve represented by $\mathbf r(t) = \left\langle \frac{t^2}{2}, \, \ln t, \, t\sqrt{2} \right\rangle$, where t > 0.
 - (a) Find the length of the curve from t = 1 to t = 5.
 - (b) Find the curvature at t = 1.
 - (c) Find the tangential and normal components of the acceleration vector $(a_T \text{ and } a_N)$ at t=1.

- 8. Let $\mathbf{r}(t)$ be any smooth space curve with unit tangent vector \mathbf{T} and binormal vector \mathbf{B} . Show that $\mathbf{B}' \cdot \mathbf{T} = 0$ (Hint: Start with $\mathbf{B} \cdot \mathbf{T} = 0$).
- 9. Sketch and give the name of the following surfaces:
 - (a) $y = x^2 + 4z^2 + 1$
 - (b) $z = \sqrt{r^2 9}$
 - (c) $\rho = 4\sin\phi\cos\theta$
- 10. Find the limit if it exists or show that it does not exist.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^4y^3}{x^4+2y^4}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{(x^2+y^4)^3}$
- 11. Consider the level surface S: $F(x, y, z) = 2x^2 + 2y^2 z^2 = 0$ and the point P(1, 1, 2).
 - (a) Find the direction in which the maximum rate of change of F at P occurs.
 - (b) What is the maximum rate of change?
 - (c) Find the directional derivative of F at P in the direction $\mathbf{v} = \langle 2, -1, -2 \rangle$.
 - (d) Find a vector tangent to the curve of intersection of S and the hyperbolic paraboloid $z = 3x^2 y^2$ at P.
- 12. Let $z = f(x, y) = \sqrt{2x^3 + y^2}$.
 - (a) Find the total differential of f.
 - (b) Find an equation of the tangent plane to this surface at P(2,3,5).
 - (c) Use this tangent plane to approximate f(2.02, 2.97).
- 13. Let z = f(u) where $u = x^2 + y^2$ Show that

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 4(x^2 - y^2) \frac{d^2 f}{du^2}$$

- 14. Find and classify the critical points of $f(x,y) = x^3 + y^3 3x^2 3y^2 9x$.
- 15. Use the method of Lagrange multipliers to find the maximum and minimum of f(x, y, z) = z subject to the constraints g(x, y, z) = x + y + z 12 = 0 and $h(x, y, z) = x^2 + y^2 z = 0$.
- 16. Set up the double integral in cartesian coordinates (**do not evaluate**): $\int_0^{\pi/2} \int_0^{2\cos\theta} r^3 \sin(2\theta) \ dr d\theta$
- 17. Evaluate the integrals (sketch the regions).
 - (a) $\int_0^1 \int_{\arctan y}^{\pi/4} \sec x \, dx dy$
 - (b) $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} (x^2+y^2) dz dy dx$

- 18. Let S be the solid region above the cone $z = \sqrt{\frac{x^2 + y^2}{3}}$, and below the sphere $x^2 + y^2 + z^2 = 9$. Evaluate $\iiint_{S} \sqrt{x^2 + y^2 + z^2} \ dV$.
- 19. Sketch the solid region S in the first octant bounded by the coordinate planes and the surfaces $z = 1 x^2$ and x + y = 1. Set up (**do not evaluate**) a triple integral needed to find its volume.

Answers

1. -2

2. (a)
$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \sum_{n=2}^{\infty} \frac{(2n-1)!!x^{2n}}{2^n n!}$$
 $R = 1$

(b)
$$\arccos x = \frac{\pi}{2} - \left(x + \frac{x^3}{6} + \sum_{n=2}^{\infty} \frac{(2n-1)!!x^{2n+1}}{2^n n!(2n+1)}\right)$$
 $R = 1$

3. (a)
$$g(x) = \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{2n+1} + \frac{1}{(2n+1)!} \right) \frac{x^{6n+4}}{6n+4}$$
 $R = 1$

(b) $g(0.5) \simeq 0.031201$

4. (a)
$$T_3(x) = 1 + \frac{2(x-1)}{3} - \frac{(x-1)^2}{9} + \frac{4(x-1)^3}{81}$$

$$R_3(x) = \frac{-7(x-1)^4}{243z^{10/3}} \quad \text{where } z \text{ is between } x \text{ and } 1$$

(b) $|R_3(x)| \le 0.018147$

5. (a)
$$\frac{dy}{dx} = \frac{4 - 3t^2}{2t}$$
 and $\frac{d^2y}{dx^2} = \frac{3t^2 + 4}{4t^3}$

(b) Intercepts: $(0, \pm 3)$ $(t = \pm 1)$, (-3, 0) $(t = \pm 2)$ and (1, 0)(t = 0), V.T. at (1, 0) (t = 0) and H.T. at $(-1/3, \pm 16\sqrt{3}/9)$ $(t = \pm 2/\sqrt{3})$

(c)

(d)
$$A = 2 \int_0^2 (t^3 - 4t)(-2t)dt = -4 \int_0^2 (t^4 - 4t^2)dt$$

6. (a)

(b) Points of intersection are (0,0), $(1/2,\pi/6)$, $(1/2,5\pi/6)$, $(-1,3\pi/2)=(1,\pi/2)$

(c)
$$A = 2(1/2) \int_{\pi/6}^{\pi/2} \{\sin^2 \theta - \cos^2(2\theta)\} d\theta$$

(d)
$$\mathcal{L} = 2 \int_0^{\pi/4} \sqrt{1 + 3\sin^2(2\theta)} \ d\theta$$

7. (a) $\mathcal{L} = 12 + \ln 5$

(b)
$$\kappa(1) = \frac{\sqrt{2}}{4}$$

(c)
$$a_T(1) = 0$$
 and $a_N(1) = \sqrt{2}$

8. Note that $\mathbf{B'} \cdot \mathbf{T} + \mathbf{B} \cdot \mathbf{T'} = 0$, $\mathbf{T'} = \|\mathbf{T'}\|\mathbf{N}$ and $\mathbf{B} \cdot \mathbf{N} = 0$. It follows that $\mathbf{B} \cdot \mathbf{T'} = \|\mathbf{T'}\|\mathbf{B} \cdot \mathbf{N} = 0$ so $\mathbf{B'} \cdot \mathbf{T} = 0$

- 9. (a) elliptic paraboloid $(y-1=x^2+4z^2)$
 - (b) Top half of Hyperboloid of one sheet
 - (c) Sphere $((x-2)^2 + y^2 + z^2 = 4)$
- 10. (a) The limit is 0.
 - (b) The limit does not exist.

11. (a)
$$\frac{\langle 1, 1, -1 \rangle}{\sqrt{3}}$$

(b)
$$4\sqrt{3}$$

(c)
$$D_{\mathbf{u}}f(P) = 4$$

(d)
$$(3, 5, 8)$$

12. (a)
$$dz = \frac{3x^2}{\sqrt{2x^3 + y^2}} dx + \frac{y}{\sqrt{2x^3 + y^2}} dy$$

(b)
$$z - 5 = \frac{12}{5}(x - 2) + \frac{3}{5}(y - 3)$$

(c)
$$f(2.02, 2, 97) \simeq 5.03$$

- 13. $\frac{\partial^2 z}{\partial x^2} = 2\frac{df}{du} + 4x^2\frac{d^2f}{du^2}$ due to symmetry: $\frac{\partial^2 z}{\partial y^2} = 2\frac{df}{du} + 4y^2\frac{d^2f}{du^2}$
 - Subtract to get the given equation.
- 14. There are 4 critical points. The points (-1,2), (3,0) are all saddle points, (3,2) is a local minimum and (-1,0) is a local maximum.
- 15. The maximum is f(-3, -3, 18) = 18 and the minimum is f(2, 2, 8) = 8.
- 16. $\int_0^2 \int_0^{\sqrt{2x-x^2}} 2xy dy dx$
- 17. (a) $\sqrt{2} 1$
 - (b) $\frac{32\pi}{3}$
- 18. $\frac{81\pi}{4}$
- 19. $\int_0^1 \int_0^{1-x} \int_0^{1-x^2} dz dy dx$